
The Mutex Watershed: Efficient,
Parameter-Free Image Partitioning

Steffen Wolf1, Constantin Pape1,2(B), Alberto Bailoni1, Nasim Rahaman1,
Anna Kreshuk1,2, Ullrich Köthe1, and Fred A. Hamprecht1

1 HCI/IWR, University of Heidelberg, Heidelberg, Germany
{steffen.wolf,alberto.bailoni,nasim.rahaman,ullrich.kothe,

fred.hamprecht,constantin.pape,anna.kreshuk}@iwr.uni-heidelberg.de
2 EMBL Heidelberg, Heidelberg, Germany

Abstract. Image partitioning, or segmentation without semantics, is
the task of decomposing an image into distinct segments; or equiva-
lently, the task of detecting closed contours in an image. Most prior
work either requires seeds, one per segment; or a threshold; or formu-
lates the task as an NP-hard signed graph partitioning problem. Here,
we propose an algorithm with empirically linearithmic complexity. Unlike
seeded watershed, the algorithm can accommodate not only attractive
but also repulsive cues, allowing it to find a previously unspecified num-
ber of segments without the need for explicit seeds or a tunable threshold.
The algorithm itself, which we dub “Mutex Watershed”, is closely related
to a minimal spanning tree computation. It is deterministic and easy to
implement. When presented with short-range attractive and long-range
repulsive cues from a deep neural network, the Mutex Watershed gives
results that currently define the state-of-the-art in the competitive ISBI
2012 EM segmentation benchmark. These results are also better than
those obtained from other recently proposed clustering strategies oper-
ating on the very same network outputs.

1 Introduction

Most image partitioning algorithms are defined over a graph encoding purely
attractive interactions. No matter whether a segmentation or clustering is then
found agglomeratively (as in single linkage clustering/watershed) or divisively (as
in spectral clustering or iterated normalized cuts), the user either needs to spec-
ify the desired number of segments or a termination criterion. An even stronger
form of supervision is in terms of seeds, where one pixel of each segment needs to
be designated as such either by a user or automatically. Unfortunately, cluster-
ing with automated seed selection remains a fragile and error-fraught process,

S. Wolf and C. Pape—Contributed equally.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01225-0 34) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11208, pp. 571–587, 2018.
https://doi.org/10.1007/978-3-030-01225-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01225-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-01225-0_34
https://doi.org/10.1007/978-3-030-01225-0_34

572 S. Wolf et al.

because every missed or hallucinated seed causes an under- or oversegmenta-
tion error. Although the learning of good edge detectors boosts the quality of
classical seed selection strategies (such as finding local minima of the boundary
map, or thresholding boundary maps), non-local effects of seed placement along
with strong variability in region sizes and shapes make it hard for any learned
predictor to place exactly one seed in every true region.

Fig. 1. Left: Overlay of raw data from the ISBI 2012 EM segmentation challenge and
the edges for which attractive (green) or repulsive (red) interactions are estimated for
each pixel using a CNN. Middle: vertical/horizontal repulsive interactions at interme-
diate/long range are shown in the top/bottom half. Right: Active mutual exclusion
(mutex) constraints that the proposed algorithm invokes during the segmentation pro-
cess. (Color figure online)

In contrast to the above class of algorithms, multicut/correlation clustering
partitions vertices with both attractive and repulsive interactions encoded into
the edges of a graph. Multicut has the great advantage that a “natural” parti-
tioning of a graph can be found, without needing to specify a desired number of
clusters, or a termination criterion, or one seed per region. Its great drawback
is that its optimization is NP-hard.

The main insight of this paper is that when both attractive and repulsive
interactions between pixels are available, then a generalization of the watershed
algorithm can be devised that segments an image without the need for seeds
or stopping criteria or thresholds. It examines all graph edges, attractive and
repulsive, sorted by their weight and adds these to an active set iff they are not
in conflict with previous, higher-priority, decisions. The attractive subset of the
resulting active set is a forest, with one tree representing each segment. However,
the active set can have loops involving more than one repulsive edge. See Fig. 1
for a visual abstract.

In summary, our principal contribution, the Mutex Watershed, is a “best of
both worlds” algorithm that combines the multicut’s desirable lack of hyper-
parameters with the small computational footprint of Kruskal-type watershed
algorithm.

Mutex Watershed 573

The algorithm is presented in Sect. 3. In Sect. 4 we evaluate the algo-
rithm against very strong baselines. We choose a challenging dataset for
neuron segmentation from electron microscopy (EM) image stacks as bench-
mark. For this task, watershed segmentation is a key component: EM stain-
ing only highlights membrane boundaries, discouraging the use of region cues
for segmentation. By incorporating long-range repulsions into the watershed
procedure, we can obtain an accurate segmentation from this step already,
avoiding costly post-processing for agglomeration. In addition, we present pre-
liminary results on the BSDS500, demonstrating the applicability of the pro-
posed method to natural images. We describe our future plans, including exten-
sions to semantic segmentation, in Sect. 5. Our implementation is available at
https://github.com/hci-unihd/mutex-watershed.git.

2 Related Work

In the original watershed algorithm [1], seeds were automatically placed at all
local minima of the boundary map. Unfortunately, this leads to severe over-
segmentation. Defining better seeds has been a recurring theme of watershed
research ever since. The simplest solution is offered by the seeded watershed
algorithm [2]: It relies on an oracle (an external algorithm or a human) to pro-
vide seeds and assigns each pixel to its nearest seed in terms of minimax path
distance. In the absence of an oracle, automatic seed selection is challenging
because exactly one seed must be placed in every region. Simple methods, e.g.
defining seeds by connected regions of low boundary probability, do not work:
The segmentation quality is usually insufficient because multiple seeds are in the
same region and/or seeds leak through the boundary.

This problem is typically addressed by biasing seed selection towards over-
segmentation (with seeding at all minima being the extreme case). The water-
shed algorithm then produces superpixels that are merged into final regions by
more or less elaborate postprocessing. This works better than using watersheds
alone because it exploits the larger context afforded by superpixel adjacency
graphs. Many criteria have been proposed to identify the regions to be preserved
during merging, e.g. region dynamics [3], the waterfall transform [4], extinction
values [5], region saliency [6], and (α, ω)-connected components [7]. A merging
process controlled by criteria like these can be iterated to produce a hierarchy
of segmentations where important regions survive to the next level. Variants of
such hierarchical watersheds are reviewed and evaluated in [8].

These results highlight the close connection of watersheds to hierarchical clus-
tering and minimum spanning trees/forests [9,10], which inspired novel merging
strategies and termination criteria. For example, [11] simply terminated hier-
archical merging by fixing the number of surviving regions beforehand. [12]
incorparate predefined sets of generalized merge constraints into the cluster-
ing algorithm. Graph-based segmentation according to [13] defines a measure
of quality for the current regions and stops when the merge costs would exceed
this measure. Ultrametric contour maps [14] combine the gPb (global probability

https://github.com/hci-unihd/mutex-watershed.git

574 S. Wolf et al.

of boundary) edge detector with an oriented watershed transform. Superpixels
are agglomerated until the ultrametric distance between the resulting regions
exceeds a learned threshold. An optimization perspective is taken in [15], which
introduces h-increasing energy functions and builds the hierarchy incrementally
such that merge decisions greedily minimize the energy. The authors prove that
the optimal cut corresponds to a different unique segmentation for every value
of a free regularization parameter.

An important line of research is based on the observation that superior par-
titionings are obtained when the graph has both attractive and repulsive edges.
Solutions that optimally balance attraction and repulsion do not require external
stopping criteria such as predefined number of regions or seeds. This general-
ization leads to the NP-hard problem of correlation clustering or (synonymous)
multicut (MC) partitioning [16]. Fortunately, modern integer linear program-
ming solvers in combination with incremental constraint generation can solve
problem instances of considerable size [17], and good approximations exist for
even larger problems [18,19].

Another beneficial extension is the introduction of additional long-range
edges. Thanks to their larger field of view, the strength of these edges can often
be estimated with greater certainty than is achievable for the local edges used
in standard watersheds. This has been used in [20] to represent object size con-
straints by repulsive long-range edges, which is still an MC-type problem. When
long-range edges are also allowed to be attractive, the problem turns into the
more complicated lifted multicut (LMC) [21]. Realistic problem sizes can only
be solved approximately [22,23], but watershed superpixels followed by LMC
postprocessing achieve state-of-the-art results on important benchmarks [24].
Long-range edges are also used in [25], as side losses for the boundary detection
CNN; but they are not used explicitly in any downstream inference.

In general, striking progress in watershed-based segmentation has been
achieved by learning boundary maps with convolutional neural networks
(CNNs). This is nicely illustrated by the evolution of neurosegmentation for
connectomics, an important field we also address in the experimental section.
CNNs were introduced to this application in [26] and became, in much refined
form [27], the winning entry of the ISBI 2012 Neuro-Segmentaion Challenge
[28]. Boundary maps and superpixels were further improved by progress in CNN
architectures and data augmentation methods, using U-Nets [29], FusionNets
[30] or inception modules [24]. Subsequent postprocessing with the GALA algo-
rithm [31,32], conditional random fields [33] or the lifted multicut [24] pushed the
envelope of final segmentation quality. MaskExtend [34] applied CNNs to both
boundary map prediction and superpixel merging, while flood-filling networks
[35] eliminated superpixels all together by training a recurrent neural network
to perform region growing one region at a time.

Most networks mentioned so far learn boundary maps on pixels, but learning
works equally well for edge-based watersheds, as was demonstrated in [36,37]
using CNN-generated edge weights according to [38,39]. Tailoring the learning
objective to the needs of the watershed algorithm by penalizing critical edges

Mutex Watershed 575

along minimax paths [39] or end-to-end training of edge weights and region
growing [40] improved results yet again.

Outside of connectomics, [41] obtained superior boundary maps from
CNNs by learning not just boundary strength, but also its gradient direction.
Holistically-nested edge detection [42,43] couples the CNN loss at multiple res-
olutions using deep supervision and is successfully used as a basis for watershed
segmentation of medical images in [44].

The present paper combines all these concepts (hierarchical clustering, attrac-
tive and repulsive interactions, long-range edges, and CNN-based learning) into a
novel efficient segmentation framework. It can be interpreted as a generalization
of [12], because we also allow for soft constraints (which can be overridden by
strong attractive edges), and constraints are generated on the fly by a neural net-
work rather than predefined. Our method is also related to greedy additive edge
contraction (GAEC) according to [22], but we handle attractive and repulsive
interactions separately and define edge strength between clusters by a maximum
instead of an additive rule.

3 The Mutex Watershed Algorithm

3.1 Definitions and Notation

We consider the problem of clustering a graph G(V,E+ ∪ E−,W+ ∪ W−) with
both attractive and repulsive edge attributes. The scalar attribute w+

e ∈ R
+
0

associated with edge e ∈ E+ is a merge affinity: the higher this number, the
higher the inclination of the two incident vertices to be assigned to the same
cluster. Similarly, w−

e ∈ R
+
0 for e ∈ E− is a split tendency: the higher this num-

ber, the greater the tendency of the incident vertices to be in different clusters.
In our application, each vertex corresponds to one pixel in the image to be

segmented. Two vertices may have no edge connecting them; or an attractive
edge e ∈ E+; or a repulsive edge e ∈ E−; or two edges at the same time,
one attractive and one repulsive. Edges can be either local/short-range (when
connecting two pixels that are immediately adjacent in the image) or long-range.

The Mutex Watershed algorithm, defined in Subsect. 3.3, maintains disjunct
active sets A+ ⊆ E+, A− ⊆ E−, A+ ∩ A− = ∅, that encode merges and mutual
exclusion constraints, respectively. Clusters are defined via the “connected”
predicate:

∀i, j ∈ V : Πi→j = {path π from i to j with π ⊆ E+}
connected(i, j) ⇔ ∃ path π ∈ Πi→j with π ⊆ A+ ⊆ E+

cluster(i) = {i} ∪ {j : connected(i, j)}
Conversely, the active subset A− ⊆ E− of repulsive edges defines mutual exclu-
sion relations by using the following predicate:

mutex(i, j) ⇔ ∃ e = (k, l) ∈ A− with
k ∈ cluster(i) and l ∈ cluster(j) and
cluster(i)
= cluster(j)

576 S. Wolf et al.

Admissible active edge sets A+ and A− must be chosen such that the result-
ing clustering is consistent, i.e. nodes engaged in a mutual exclusion constraint
cannot be in the same cluster: mutex(i, j) ⇒ not connected(i, j). The “con-
nected” and“mutex” predicates can be efficiently evaluated using a union find
data structure.

Fig. 2. Two equivalent representations of the seeded watershed clustering obtained
using (a) a maximum spanning tree computation or (b) Algorithm 1. Both graphs
share the weighted attractive (green) edges and seeds (hatched nodes). The infinitely
attractive connections to the auxiliary node (gray) in (a) are replaced by infinitely
repulsive (red) edges between each pair of seeds in (b). The two final clusterings are
defined by the active sets (bold edges) and are identical. Node colors indicate the
clustering result, but are arbitrary. (Color figure online)

3.2 Seeded Watershed from a Mutex Perspective

One interpretation of the proposed method is in terms of a generalization
of the edge-based watershed algorithm [9,45,46] or image foresting transform
[47]. This algorithm can only ingest a graph with purely attractive interations,
G(V,E+,W+). Without further constraints, the algorithm would yield only the
trivial result of a single cluster comprising all vertices. To obtain more inter-
esting output, an oracle needs to provide seeds, namely precisely one node per
cluster. These seed vertices are all connected to an auxiliary node (see Fig. 2(a))
by auxiliary edges with infinite merge affinity. A maximum spanning tree (MST)
on this augmented graph can be found in linearithmic time; and the maximum
spanning tree (or in the case of degeneracy: at least one of the maximum span-
ning trees) will include the auxiliary edges. When the auxiliary edges are deleted
from the MST, a forest results, with each tree representing one cluster [9,45,47].

We now reformulate this well-known algorithm in a way that will later emerge
as a special case of the proposed Mutex Watershed: we eliminate the auxiliary
node and edges, and replace them by a set of infinitely repulsive edges, one
for each pair of seeds (Fig. 2(b)). Algorithm 1 is a variation of Kruskal’s MST
algorithm operating on the seed mutex graph just defined, and gives results
identical to seeded watershed on the original graph.

Mutex Watershed 577

Input: weighted graph G(V, E+, W+) and seeds S ⊆ V , such that
E− = {(si, sj)|i, j ∈ 1, . . . , |S|; i �= j} is the set of infinitely repulsive edges
between all pairs of seeds;
Output: clusters defined by activated edges A+;
Initialization: A+ = ∅; A− = E−;
for (i, j) = e ∈ E+ in descending order of w+ do

if not connected(i, j) and not mutex(i, j) then
A+ ← A+ ∪ e ;

� merge i and j and inherit the mutex
constraints of the parent clusters

end

end

Algorithm 1. Mutex version of seeded watershed algorithm.

This algorithm differs from Kruskal’s only by the check for mutual exclusion
in the if-statement. Obviously, the modified algorithm has the same effect as the
original algorithm, because the final set A+ is exactly the maximum spanning
forest obtained after removing the auxiliary edges from the original solution.

In the sequel, we generalize this construction by admitting less-than-infinitely
repulsive edges. Importantly, these can be dense and are hence much easier to
estimate automatically than seeds with their strict requirement of only-one-per-
cluster.

3.3 Mutex Watersheds

We now introduce the core contribution: an algorithm that is empirically no
more expensive than a MST computation; but that can ingest both attractive
and repulsive cues and partition a graph into a number of clusters that does not
need to be specified beforehand. There is no requirement of one seed per cluster,
and not even of a hyperparameter that would implicitly determine the number
of resulting clusters.

The Mutex Watershed, Algorithm2, proceeds as follows: given a graph with
sets of attractive and repulsive edges E+ and E−, with edge weights W+ and
W− respectively, do the following: sort all edges E+∪E−, attractive or repulsive,
by their weight in descending order into a priority queue. Iteratively pop all edges
from the queue and add them to the active set one by one, provided that a set
of conditions are satisfied. More specifically, if the next edge popped from the
priority queue is attractive and its incident vertices are not yet in the same tree,
then connect the respective trees provided this is not ruled out by a mutual
exclusion constraint. If on the other hand the edge popped is repulsive, and if
its incident vertices are not yet in the same tree, then add a mutual exclusion
constraint between the two trees.

The crucial difference to Algorithm 1 is that mutex constraints are no longer
pre-defined, but created dynamically whenever a repulsive edge is found. How-
ever, new exclusion constraints can never override earlier, high-priority merge

578 S. Wolf et al.

Input: weighted graph G(V, E+ ∪ E−, W+ ∪ W−);
Output: clusters defined by activated edges A+;
Initialization: A+ = ∅; A− = ∅;
for (i, j) = e ∈ E+ ∪E− in descending order of W+ ∪ W− do

if e ∈ E+ then
if not connected(i, j) and not mutex(i, j) then

merge(i, j): A+ ← A+ ∪ e;
� merge i and j and inherit the mutex

constraints of the parent clusters
end

else
if not connected(i, j) then

addmutex(i, j): A− ← A− ∪ e;
� add mutex constraint between i and j

end

end

end

Algorithm 2. Mutex Watershed

decisions. In this case, the repulsive edge in question is simply ignored. Sim-
ilarly, an attractive edge must never override earlier and thus higher-priority
must-not-link decisions.

3.4 Time Complexity Analysis

Before analyzing the time complexity of Algorithm2 we first review the complex-
ity of Kruskal’s algorithm. Using a union-find data structure the time complex-
ity of merge(i, j) and connected(i, j) is O(α(V)), where α is the slowly growing
inverse Ackerman function, and the total runtime complexity is dominated by
the initial sorting of the edges O(E log E) [48].

To check for mutex constraints efficiently, we maintain a set of all active
mutex edges

M [Ci] = {(u, v) ∈ A−|u ∈ Ci ∨ v ∈ Ci}
for every Ci = cluster(i) using hash tables, where insertion of new mutex
edges (i.e. addmutex) and search have an average complexity of O(1). Note
that every cluster can be efficiently identified by its union-find root node. For
mutex(i, j) we check if M [Ci] ∩ M [Cj] = ∅ by searching for all elements of the
smaller hash table in the larger hash table. Therefore mutex(i, j) has an aver-
age complexity of O(min(|M [Ci]|, |M [Cj]|). Similarly, during merge(i, j), mutex
constraints are inherited by merging two hash tables, which also has an average
complexity O(min(|M [Ci]|, |M [Cj]|).

Mutex Watershed 579

In conclusion, the average runtime contribution of attractive edges O(|E+| ·
α(V)+|E+|·M) (checking mutex constrains and possibly merging) and repulsive
edges O(|E−|·α(V)+|E−|) (insertion of one mutex edge) result in a total average
runtime complexity of Algorithm2:

O(E log E + E · α(V) + EM). (1)

where M is the expected value of min(|M [Ci]|, |M [Cj]|). Using α(V) ∈
O(log V) ∈ O(log E) this simplifies to

O(E log E + EM). (2)

In the worst case O(M) = O(E), the Mutex Watershed Algorithm has a
runtime complexity of O(E2). Empirically, we find that O(EM) ≈ O(E log E)
by measuring the runtime of Mutex Watershed for different sub-volumes of the
ISBI challenge (see Fig. 3), leading to a

Empirical Mutex Watershed Complexity: O(E log E) (3)

Fig. 3. Runtime T of Mutex Watershed (without sorting of edges) measured on sub-
volumes of the ISBI challenge of different sizes (thereby varying the total number of
edges E). We plot T

|E| over |E| in a logarithmic plot, which makes T ∼ |E|log(|E|)
appear as straight line. A logarithmic function (green line) is fitted to the measured
T
|E| (blue crosses) with (R2 = 0.9896). The good fit suggests that empirically T ≈
O(E log E). (Color figure online)

580 S. Wolf et al.

4 Experiments

We evaluate the Mutex Watershed on the challenging task of neuron segmen-
tation in electron microscopy (EM) image volumes. This application is of key
interest in connectomics, a field of neuro-science that strives to reconstruct neural
wiring diagrams spanning complete central nervous systems. The task requires
segmentation of neurons from electron microscopy images of neural tissue – a
challenging endeavor, since segmentation has to be based only on boundary infor-
mation (cell membranes) and some of the boundaries are not very pronounced.
Besides, cells contain membrane-bound organelles, which have to be suppressed
in the segmentation. Some of the neuron protrusions are very thin, but all of
those have to be preserved in the segmentation to arrive at the correct connec-
tivity graph. While a lot of progress has been made recently, only manual tracing
yields sufficient accuracy for correct circuit reconstruction [49].

We validated the Mutex Watershed algorithm on the most popular neural
segmentation challenge: ISBI2012 [28]. We estimate the edge weights using a
CNN as described in Sect. 4.1 and compare with other entries in the leaderboard
as well as with other common post-processing methods for the same network
predictions Sect. 4.2.

4.1 Estimating Edge Weights with a CNN

The common approach to EM segmentation is to predict which pixels belong
to a cell membrane using a CNN. Different post-processing methods are used
on top to obtain a segmentation, see Sect. 2 for an overview of these methods.
The CNN can be either trained to predict boundary pixels [24,27] or undirected
affinities [25,50] which express how likely it is for a pixel to belong to a different
cell than its neighbors in the 6-neighborhood. In this case, the output of the
network contains three channels, corresponding to left, down and next imaging
plane neighbors in 3d. The affinities do not have to be limited to immediate
neighbors - in fact, [25] have shown that introduction of long-range affinities is
beneficial for the final segmentation even if they are only used as auxiliary loss
during training. Building on the work of [25], we train a CNN to predict short
and long-range affinities and then use those directly as weights for the Mutex
Watershed algorithm.

We estimate the affinities/edge weights for the neighborhood structure shown
in Fig. 4. To that end, we define local attractive and long-range repulsive edges.
The choice of this structure has to be motivated by the underlying data - we use
a different pattern for in-plane and between-plane edges due to the anisotropy
of the validation datasets. In more detail, we picked a sparse ring of in-plane
repulsive edges and additional longer-range in-plane edges which were necessary
to split regions reliably (see Fig. 4a). We also added connections to the indi-
rect neighbors in the lower adjacent slice to ensure correct 3D connectivity (see
Fig. 4b).

Mutex Watershed 581

In total, C+ attractive and C− repulsive edges are defined for each pixel,
resulting in C+ + C− output channels in the network. We partition the set of
attractive/repulsive edges into subsets H+ and H− that contain all edges at a
specific offset, attractive edges: E+ =

⋃C+

c H+
c and repulsive edges analogously.

Each element of the subsets H+
c and H−

c corresponds to a specific channel pre-
dicted by the network. We further assume that weights take values in [0, 1] and
adopt the same conventions for attraciveness/repulsion as in Sect. 3. For more
details on network architecture and training see Supplementary 1.

In our experiments, we pick a subset of repulsive edges, by using strides of
2 in the XY-plane in order to avoid artifacts caused by occasional very thick
membranes. Note that the stride is not applied to local (attractive) edges, but
only to long-range (repulsive) edges.

(a) XY-plane neighborhood with local
attractive edges, a sparse repulsive edges
with approximate radius 9 and further
long-range connections with distance 27

(b) Due to the high anisotropy of the data
we limit the Z-plane edges to a distance of
1. The direct neighbors are attractive; the
indirect neighbors are repulsive.

Fig. 4. Local neighborhood structure of attractive (green) and repulsive (red) edges
in the Mutex Watershed graph. Due to point symmetry to the origin, we only predict
half of the directions with the neural network. (Color figure online)

4.2 ISBI Challenge

The ISBI 2012 EM Segmentation Challenge [28] is the neuron segmentation chal-
lenge with the largest number of competing entries. The challenge data contains
two volumes of dimensions 1.5× 2× 2 microns with a resolution of 50× 4× 4 nm
per pixel. The groundtruth is provided as binary membrane labels, which can
easily be converted to a 2D, but not 3D segmentation. To train a 3D model, we
follow the procedure described in [24].

The test volume has private groundtruth; results can be submitted to the
leaderboard. They are evaluated based on the Adapted Rand Score (Rand-Score)
and the Variation of Information Score (VI-Score) [28], separately for each 2D slice.

582 S. Wolf et al.

Fig. 5. Mutex Watershed applied on the ISBI Challenge test data. For further images
and a detailed comparison to the baseline segmentation methods view Supplementary
Sect. 2.

Our method holds the top entry in the challenge’s leader board1 at the time
of submission, see Table 1a. This is especially remarkable, because it is simpler
than the methods holding the other top entries. Similar to us, they rely on a
CNN to predict boundary locations, but postprocess its output with the complex
pipeline described in [24], that involves a NP-hard partitioning step.

In addition, we compare to baseline post-processing methods starting from
our network predictions: thresholding (THRESH), two watershed variants (WS,
WSDT), and one multicut variant (MC-LOCAL) only take into account short-
range predictions. Lifed multicut (LMC) and another multicut variant (MC-
FULL) also use long-range predictions. For these baseline methods we have
only produced 2D segmentations for the individual slices, either because the
3D results were inferior (THRESH, WS, WSDT) or infeasible to obtain (MC,
LMC). In contrast, the Mutex Watershed benefited from 3D segmentation. See
Table 1b for the evaluation results and see Supplementary 2 for further details
on the baseline methods and a qualitative comparison.

The three methods that use short- and long-range connectivty perform sig-
nificantly better than the other methods. Somewhat surprisingly, MWS performs
better than MC-FULL and LMC, which are based on a NP-hard partition prob-
lem. This might be explained by the lack of 3D information in the two latter
two approaches (solving the 3D model was infeasible).

4.3 Study on Natural Image Segmentation

We conducted preliminary experiments on the Berkeley segmentation dataset
BSD500 [53] to study the Mutex Watersheds applicability to natural images.
Training a state-of-the-art edge detection network on this small dataset requires

1 http://brainiac2.mit.edu/isbi challenge/leaders-board-new.

http://brainiac2.mit.edu/isbi_challenge/leaders-board-new

Mutex Watershed 583

a set of dataset specific optimization tricks such as training with external data,
multi resolution architectures and auxiliary losses [43]. In this preliminary study
we train a 2D version of the network used for the ISBI experiments to predict
the 2D connectivity pattern depicted in Fig. 4a. To alleviate the small size of
the training set, we present this network with predictions from [42] as additional
input channel.

Table 1. Results on the ISBI 2012 EM Segmentation Challenge.

In order to isolate the influence of the quality of the underlying affinities, we
run ablation experiments where we interpolate (via weighted average) between
(a) affinities as predicted by our neural network, (b) those obtained from the
ground-truth and (c) uniform noise. We obtain Mutex Watershed segmentations
from the interpolated affinities for the BSD testset, size-filter them (as the only
post-processing step) and evaluate with the Rand Index. The “phase transition
diagram” resulting from these experiments is shown in Fig. 6a; Table 6b shows
Rand Index and Variation of Information obtained for several points on this
diagram.

Observe that the vertices corresponding to (a) and (c) can be interpreted as
structured and unstructured noise on the ground-truth affinities (respectively).
Hence, the results of our experiments show that the Mutex Watershed is fairly
robust against both types of noise; when mixing the GT with noise, the quality
of the segmentations is unaffected up to 60 % noise. When mixing GT with NN
predictions, it is unaffected to an even higher degree.

In addition, we compare to the result of [22], who use an approach similar to
ours and solve a Lifted Multicut based on long range potentials extracted from a
pre-computed probability map. In Supplementary 3, we show the segmentations
resulting at different stages of interpolation between GT, NN predictions and
noise.

584 S. Wolf et al.

(a) BSD500 segmentation quality of MWS
algorithm, given affinities from ground
truth (top corner), from a neural network
(right corner) or pure noise (left corner);
plus hundreds of experiments on weighted
combinations of the above. MWS
segmentation quality (evaluated with
Rand index) degrades only once a large
amount of noise is added to the affinities.

NN GT Noise RI VI

100% 0% 0% 0.826 1.722
0% 100% 0% 0.901 0.927
0% 38% 62% 0.897 0.976
0% 33% 66% 0.820 1.912
80% 20% 0% 0.878 1.247
43% 0% 57% 0.813 2.127
43% 14% 43% 0.838 1.636
Keuper et al. [22] 0.82 1.75

(b) BSD500 scores at various
interpolations between the neural
network predictions (NN),
ground-truth (GT) and noise. See
Supplementary Section 3 for example
images of the interpolated affinities.
We include [22] as a reference point,
because they also use long range
potentials in their segmentation
method.

Fig. 6. (a) BSD500 segmentation quality of MWS algorithm, given affinities from
ground truth (top corner), from a neural network (right corner) or pure noise (left
corner); plus hundreds of experiments on weighted combinations of the above. MWS
segmentation quality (evaluated with Rand index) degrades only once a large amount
of noise is added to the affinities. (b) BSD500 scores at various interpolations between
the neural network predictions (NN), ground-truth (GT) and noise. See Supplementary
Sect. 3 for example images of the interpolated affinities. We include [22] as a reference
point, because they also use long range potentials in their segmentation method.

5 Conclusion

We have presented a fast algorithm for the clustering of graphs with both attrac-
tive and repulsive edges. The ability to consider both obviates the need for the
kind of stopping criterion or even seeds that all popular algorithms except for
correlation clustering need. The proposed method has low computational com-
plexity in imitation of its close relative, Kruskal’s algorithm.

Finally, we have found that the proposed algorithm, when presented with
informative edge costs from a good neural network, outperforms all known meth-
ods on a competitive bioimage partitioning benchmark, including methods that
operate on the very same network predictions.

In future work we want to generalize our algorithm to semantic instance seg-
mentation commonly found in natural image segmentation challenges [54–56].

Acknowledgements. The authors acknowledge partial support by DFG HA 4364/8-1
and DFG SFB 1129.

Mutex Watershed 585

References

1. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on
immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 6, 583–598 (1991)

2. Beucher, S., Meyer, F.: The morphological approach to segmentation: the water-
shed transformation. Opt. Eng. 34, 433–433 (1992)

3. Grimaud, M.: New measure of contrast: the dynamics. In: Gader, P.D., Dougherty,
E.R., Serra, J.C. (eds.), Proceedings of the Image Algebra and Morphological Pro-
cessing, vol. 1769. SPIE Conference Series, pp. 292–305 (1992)

4. Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In:
Serra, J., Soille, P. (eds.) ISMM 1994, vol. 94, pp. 69–76. Springer, Dordrecht
(1994). https://doi.org/10.1007/978-94-011-1040-2 10

5. Vachier, C., Meyer, F.: Extinction value: a new measurement of persistence. In:
Worksh. Nonlinear Signal and Image Processing, vol. 1, pp. 254–257 (1995)

6. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)

7. Soille, P.: Constrained connectivity for hierarchical image decomposition and sim-
plification. IEEE Trans. Patt. Anal. Mach. Intell. 30(7), 1132–1145 (2008)

8. Perret, B., Cousty, J., Guimaraes, S.J., Maia, D.S.: Evaluation of hierarchical
watersheds (2017). HAL preprint 01430865

9. Meyer, F.: Morphological multiscale and interactive segmentation. In: WS on Non-
linear Signal and Image Processing, pp. 369–377 (1999)

10. Najman, L.: On the equivalence between hierarchical segmentations and ultramet-
ric watersheds. J. Math. Imaging Vis. 40(3), 231–247 (2011)

11. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for
image processing, segmentation, and information retrieval. IEEE Trans. Image
Proc. 9, 561–576 (2000)

12. Malmberg, F., Strand, R., Nyström, I.: Generalized hard constraints for graph
segmentation. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp.
36–47. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21227-7 4

13. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
Int. J. Comput. Vis. 59(2), 167–181 (2004)

14. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 33(5), 898–916 (2011)

15. Kiran, B.R., Serra, J.: Global-local optimizations by hierarchical cuts and climbing
energies. Pattern Recogn. 47(1), 12–24 (2014)

16. Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic
image segmentation with closedness constraints. In: Proceedings of the ICCV 2011,
pp. 2611–26181 (2011)

17. Andres, B., et al.: Globally optimal closed-surface segmentation for connectomics.
In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33712-3 56

18. Yarkony, J., Ihler, A., Fowlkes, C.C.: Fast planar correlation clustering for image
segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C.
(eds.) ECCV 2012. LNCS, vol. 7577, pp. 568–581. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33783-3 41

19. Pape, C., Beier, T., Li, P., Jain, V., Bock, D.D., Kreshuk, A.: Solving large multicut
problems for connectomics via domain decomposition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–10 (2017)

https://doi.org/10.1007/978-94-011-1040-2_10
https://doi.org/10.1007/978-3-642-21227-7_4
https://doi.org/10.1007/978-3-642-33712-3_56
https://doi.org/10.1007/978-3-642-33712-3_56
https://doi.org/10.1007/978-3-642-33783-3_41

586 S. Wolf et al.

20. Zhang, C., Yarkony, J., Hamprecht, F.A.: Cell detection and segmentation using
correlation clustering. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe,
R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 9–16. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10404-1 2

21. Horňáková, A., Lange, J.H., Andres, B.: Analysis and optimization of graph decom-
positions by lifted multicuts. In: International Conference on Machine Learning,
pp. 1539–1548 (2017)

22. Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient
decomposition of image and mesh graphs by lifted multicuts. In: Proceedings of
the ICCV 2015, pp. 1751–1759 (2015)

23. Beier, T., Andres, B., Köthe, U., Hamprecht, F.A.: An efficient fusion move algo-
rithm for the minimum cost lifted multicut problem. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 715–730. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46475-6 44

24. Beier, T., Pape, C., Rahaman, N., Prange, T.E.A.: Multicut brings automated
neurite segmentation closer to human performance. Nat. Methods 14(2), 101–102
(2017)

25. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the
snemi3d connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)

26. Jain, V., et al.: Supervised learning of image restoration with convolutional net-
works. In: Proceedings of the ICCV 2007, pp. 1–8 (2007)

27. Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural net-
works segment neuronal membranes in electron microscopy images. In: Proceedings
of the NIPS 2012 (2012)

28. Arganda-Carreras, I., Turaga, S., Berger, D.: Crowdsourcing the creation of image
segmentation algorithms for connectomics. Front. Neuroanat. 9, 142 (2015)

29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

30. Quan, T.M., Hilderbrand, D.G., Jeong, W.K.: FusionNet: a deep fully resid-
ual convolutional neural network for image segmentation in connectomics.
arXiv:1612.05360 (2016)

31. Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.: Machine learning
of hierarchical clustering to segment 2D and 3D images. PLoS One 8, e71715 (2013)

32. Knowles-Barley, S., et al.: RhoanaNet pipeline: dense automatic neural annotation.
arXiv:1611.06973 (2016)

33. Uzunbaş, M.G., Chen, C., Metaxsas, D.: Optree: a learning-based adaptive water-
shed algorithm for neuron segmentation. In: Golland, P., Hata, N., Barillot, C.,
Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 97–105.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1 13

34. Meirovitch, Y., et al.: A multi-pass approach to large-scale connectomics. arXiv
preprint:1612.02120 (2016)

35. Januszewski, M., Maitin-Shepard, J., Li, P., Kornfeld, J., Denk, W., Jain, V.:
Flood-filling networks. arXiv:1611.00421 (2016)

36. Zlateski, A., Seung, H.S.: Image segmentation by size-dependent single linkage
clustering of a watershed basin graph. arXiv:1505.00249 (2015)

37. Parag, T., et al.: Anisotropic EM segmentation by 3D affinity learning and agglom-
eration. arXiv preprint 1707.08935 (2017)

38. Turaga, S.C., et al.: Convolutional networks can learn to generate affinity graphs
for image segmentation. Neural Comput. 22(2), 511–538 (2010)

https://doi.org/10.1007/978-3-319-10404-1_2
https://doi.org/10.1007/978-3-319-46475-6_44
http://arxiv.org/abs/1706.00120
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1612.05360
http://arxiv.org/abs/1611.06973
https://doi.org/10.1007/978-3-319-10404-1_13
http://arxiv.org/abs/1611.00421
http://arxiv.org/abs/1505.00249

Mutex Watershed 587

39. Turaga, S.C., Briggman, K.L., Helmstaedter, M., Denk, W., Seung, H.S.: Maximin
affinity learning of image segmentation. arXiv:0911.5372 (2009)

40. Wolf, S., Schott, L., Köthe, U., Hamprecht, F.: Learned watershed: End-to-end
learning of seeded segmentation. Proceedings of the ICCV 2017 (2017)

41. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation.
arXiv:1611.08303 (2016)

42. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the ICCV
2015, pp. 1395–1403 (2015)

43. Kokkinos, I.: Pushing the boundaries of boundary detection using deep learning.
arXiv:1511.07386 (2015)

44. Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L.: Pancreas segmentation in MRI using
graph-based decision fusion on convolutional neural networks. In: Descoteaux, M.,
Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI
2017. LNCS, vol. 10435, pp. 674–682. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66179-7 77

45. Meyer, F.: Topographic distance and watershed lines. Signal Process. 38(1), 113–
125 (1994)

46. Meyer, F.: Minimum spanning forests for morphological segmentation. In: Serra,
J., Soille, P. (eds.) Mathematical Morphology and Its Applications to Image Pro-
cessing, pp. 77–84. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-
011-1040-2 11

47. Falcão, A.X., Stolfi, J., de Alencar Lotufo, R.: The image foresting transform:
theory, algorithms, and applications. IEEE Trans. Patt. Anal. Mach. Intell. 26(1),
19–29 (2004)

48. Cormen, T.H.: Introduction to Algorithms. MIT press, Cambridge (2009)
49. Schlegel, P., Costa, M., Jefferis, G.S.: Learning from connectomics on the fly. Curr.

Opin. Insect Sci. (2017)
50. Funke, J., et al.: Large scale image segmentation with structured loss based deep

learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell.
(2018)

51. Shen, W., Wang, B., Jiang, Y., Wang, Y., Yuille, A.: Multi-stage multi-recursive-
input fully convolutional networks for neuronal boundary detection. arXiv preprint
arXiv:1703.08493 (2017)

52. Weiler, M., Hamprecht, F.A., Storath, M.: Learning steerable filters for rotation
equivariant CNNs. arXiv preprint arXiv:1711.07289 (2017)

53. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proceedings of the 8th International Conference on Com-
puter Vision, vol. 2, pp. 416–423, July 2001

54. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understand-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016)

55. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

56. Mottaghi, R., et al.: The role of context for object detection and semantic seg-
mentation in the wild. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2014)

http://arxiv.org/abs/0911.5372
http://arxiv.org/abs/1611.08303
http://arxiv.org/abs/1511.07386
https://doi.org/10.1007/978-3-319-66179-7_77
https://doi.org/10.1007/978-3-319-66179-7_77
https://doi.org/10.1007/978-94-011-1040-2_11
https://doi.org/10.1007/978-94-011-1040-2_11
http://arxiv.org/abs/1703.08493
http://arxiv.org/abs/1711.07289
https://doi.org/10.1007/978-3-319-10602-1_48

	The Mutex Watershed: Efficient, Parameter-Free Image Partitioning
	1 Introduction
	2 Related Work
	3 The Mutex Watershed Algorithm
	3.1 Definitions and Notation
	3.2 Seeded Watershed from a Mutex Perspective
	3.3 Mutex Watersheds
	3.4 Time Complexity Analysis

	4 Experiments
	4.1 Estimating Edge Weights with a CNN
	4.2 ISBI Challenge
	4.3 Study on Natural Image Segmentation

	5 Conclusion
	References

