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Abstract. We propose a monocular depth estimation algorithm based
on whole strip masking (WSM) and reliability-based refinement. First, we
develop a convolutional neural network (CNN) tailored for the depth esti-
mation. Specifically, we design a novel filter, called WSM, to exploit the
tendency that a scene has similar depths in horizonal or vertical directions.
The proposed CNN combines WSM upsampling blocks with a ResNet
encoder. Second, we measure the reliability of an estimated depth, by
appending additional layers to the main CNN. Using the reliability infor-
mation, we perform conditional random field (CRF) optimization to refine
the estimated depth map. Experimental results demonstrate that the
proposed algorithm provides the state-of-the-art depth estimation perfor-
mance.
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1 Introduction

Estimating depth information from images is a fundamental problem in computer
vision [1–3]. Humans can infer depths with ease, since we intuitively use various
cues and have an innate sense. However, it is very challenging to imitate this
ability computationally. Especially, in comparison with stereo matching [4] and
video-based approaches, monocular (or single-image) depth estimation is even
more difficult due to the lack of reliable visual cues, such as the disparity between
matching points.

Early studies for monocular depth estimation attempted to compensate for
this lack of information. Some techniques depend on scene assumptions, e.g. box
models [5] and typical indoor rooms [6], which make the techniques useful for
limited situations only. Some use additional data, e.g. user annotations [7] and
semantic labels [8], which are not always available. Also, hand-crafted features
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based on geometric and semantic cues were designed [9–11]. For example, since
a depth map often has similar values in horizontal or vertical directions, an
elongated rectangular patch was used in [9]. However, these hand-crafted features
have become obsolete and replaced by machine learning approaches recently.

As labeled data increase, many data-based techniques have been proposed.
In [12], a depth map was transferred from aligned candidates in an image pool.
More recently, many convolutional neural networks (CNNs) have been proposed
for monocular depth estimation [13–19]. They learn features to represent depths
automatically and implicitly, without requiring the traditional feature engineer-
ing. Also, several techniques combine CNNs with conditional random field (CRF)
optimization to improve the accuracy of a depth map [15–18].

In this work, we propose a novel CNN-based algorithm, which achieves accu-
rate depth estimation by exploiting the characteristics of depth information to
a greater extent. First, we develop a novel upsampling block, referred to as the
whole strip masking (WSM), to exploit the tendency that depths are flat hor-
izontally or vertically in scenes. We estimate a depth map by cascading these
upsampling blocks together with the deep network ResNet [20]. Second, we use
the notion of reliability of an estimated depth. Specifically, we measure the relia-
bility (or confidence) of the estimated depth of each pixel and use the information
to define unary and pairwise potentials of a CRF. Through the reliability-based
CRF optimization, we refine the estimated depth map and improve its accuracy.
We highlight our main contributions as follows:

– We propose a deep CNN with the novel WSM upsampling blocks for monoc-
ular depth estimation.

– We measure the reliability of an estimated depth and use the information for
the depth refinement.

– The proposed algorithm yields the state-of-the-art depth estimation perfor-
mance, outperforming conventional algorithms [8,12–19,21] significantly.

2 Related Work

Before the widespread adoption of CNNs, hand-crafted features had been used to
estimate the depth information from a single image. An early method, proposed
by Saxena et al. [9], adopted a Markov random field (MRF) model to predict the
depth from multi-scale patches and a column patch of a vertically long shape.
Saxena et al. [10] also predicted the depth, by assuming that a scene consists of
small planes and inferring the set of plane parameters. Liu et al. [11] estimated
the depth based on class-related depth and geometry priors, obtained through
semantic segmentation. Assuming that semantically similar images have similar
depth distributions, Karsch et al. [12] extracted a depth map by finding similar
images from a database and warping them.

Recently, with the remarkable success of deep learning in many applica-
tions [22–24], various CNN-based methods for monocular depth estimation have
been proposed. Eigen et al. [13] first applied a CNN to monocular depth esti-
mation. They predicted a coarse depth map based on AlexNet [25] and refined
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it with another network in a fine scale. Eigen and Fergus [14] replaced AlexNet
with the deeper VGGNet [26] and used the common network to predict depths,
semantic labels, and surface normals jointly. Laina et al. [19] improved the depth
estimation performance by combining upsampling blocks with ResNet [20], which
is about three times deeper than VGGNet. Also, Lee et al. [27] introduced the
notion of Fourier domain analysis into monocular depth estimation. These meth-
ods have gradually improved the estimation performance by adopting deeper
networks in general. However, they often yield blurry depth maps.

Sharper depth maps can be obtained by combining CNNs with CRF opti-
mization. Liu et al. [15] proposed a superpixel-based algorithm, which divides an
image into superpixels and learns unary and pairwise potentials of a CRF during
the network training. Li et al. [17] adopted hierarchical CRFs. They estimated
depths at a superpixel level and then refined them at a pixel level. Also, Wang et
al. [16] proposed a CNN for joint depth estimation and semantic segmentation,
and refined a depth map using a two-layer CRF. These CNN-based methods
[13–17,19] provide decent depth maps. In this work, by exploiting the charac-
teristics of depth information to a greater extent, as well as by adopting the
merits of the conventional methods, we attempt to further improve the depth
estimation performance.

3 Proposed Algorithm

Figure 1 is an overview of the proposed monocular depth estimation algorithm.
We first encode an input image into a feature vector based on the ResNet-50
architecture [20]. We then decode the feature vector using four WSM upsampling
blocks. Then, we use the decoded result for two purposes: (1) to estimate the
depth map ̂d and (2) to obtain the reliability map α. Finally, we perform the
CRF optimization using α to process ̂d into the refined depth map ˜d.

Fig. 1. Overview of the proposed depth estimation algorithm.
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3.1 Depth Map Estimation

Most CNNs for generating a high-resolution image (or map) as the output are
composed of encoding and decoding parts. The encoding part decreases the
spatial resolution of an input image through pooling or convolution layers with
strides. For the encoding part, in general, pre-trained networks on a very large
dataset, e.g. ImageNet [28], are used without modification or fine-tuned with a
smaller dataset to speed up the learning and alleviate the need for a large training
dataset for each specific task. On the other hand, the decoding part processes
input activations to yield a higher-resolution output map using unpooling layers
or deconvolution layers. In other words, the encoder contracts a signal, whereas
the decoder expands a signal. It is known that the contraction enables a network
to have a theoretically large receptive field without demanding unnecessarily
many parameters [29]. Also, as a network depth increases, the receptive field
gets larger. Therefore, recent deep networks, such as VGGNet and ResNet-50,
have theoretical receptive fields larger than input image sizes [29,30].

Fig. 2. The width and height distributions of six object classes, which are often
observed in indoor scenes. A central red line indicates the median, and the bottom
and top edges of a box indicate the 1st and 3rd quartiles.

However, even in the case of a deep CNN, the effective range is smaller than
the theoretical receptive field. Luo et al. [30] observed that not all pixels in the
receptive field affect an output response meaningfully. Thus, the information in a
local image region only is used to yield a response. This is undesirable especially
in the depth estimation task, which requires global information to estimate the
depth of each pixel. Note that depths in a typical image exhibit very strong
horizontal or vertical correlations. In Fig. 2, we analyze the width and height
distributions of six object classes, which are observed in indoor scenes in the
NYU Depth Dataset V2 [31], in which the semantic labels are available. For
instance, a ceiling is horizontally wide, while a door is vertically long. Also, the
average depth variation within such an object is very small, less than 0.3. Hence,
to estimate the depth of a pixel reliably, all information in the entire rows or
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columns within an image is required. The limited effective receptive fields of
conventional CNNs may degrade the depth estimation performance.

Fig. 3. The efficacy of WSM layers: (a) an image, (b) its ground-truth depths, (c)
estimated depths using convolution layers only, and (d) estimated depths using both
convolution and WSM layers.

Fig. 4. Illustration of the proposed 3 × H WSM layer.

To overcome this problem, we propose a novel filter, called WSM, for upsam-
pling blocks. Note that a typical convolution layer performs zero-padding to
maintain the same output resolution as the input resolution and uses a square
kernel of a small size, e.g. 1 × 1, 3 × 3, or 5 × 5. Thus, an output value of the
typical convolution layer merges only the local information of the input feature.
Hence, in Fig. 3(c), although the wall has similar features and depths, the estima-
tion result of a network using convolution layers only does not yield flat depths
on the wall. In contrast, to consider horizontally or vertically flat characteristics
of depth maps, the proposed WSM adopts long rectangular kernels and repli-
cates the kernel responses in the horizontal or vertical direction. Consequently,
as shown in Fig. 3(d), the proposed WSM facilitates more faithful reconstruction
of vertically flat depths on the wall.

Suppose an input feature of spatial resolution W × H. Figure 4 shows the
3 × H WSM layer. We first apply zero-padding in the horizontal direction only.
Then, we perform the horizontal convolution using the 3 × H mask, which
yields a compressed feature map of size W × 1. This compressed feature map
summarizes the information in the vertical strips of the input feature map and
is forced to have the largest receptive field in the vertical direction. Next, we
replicate the compressed feature to yield the output feature map that has the
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same size as the input. As a result, each response in the output feature map
combines all information in the corresponding vertical strip, and all responses
in the same column have an identical value. The W × 3 WSM is also performed
similarly.

Fig. 5. The structure of the proposed WSM upsampling block.

We use both 3 × H and W × 3 WSM layers in each upsampling block in Fig. 1.
Note that the proposed upsampling is also referred to as the WSM upsampling.
However, it has some limitations to use only the WSM layers in the upsampling.
First, it is important to exploit local information, as well as global information,
when estimating depths. Second, a great number of parameters are required for
the large 3 × H and W × 3 masks. To alleviate these limitations, we adopt the
inception structure in [32]. The inception structure merges the results of various
convolutions of different kernel sizes, but applies 1 × 1 convolution layers first
to lower the dimension of the input feature and thus reduce the number of
parameters. By incorporating the WSM layers into the inception structure, the
proposed WSM upsampling attempts to maximize the network capacity and
integrate both global and local information, while requiring a moderate number
of parameters. Figure 5 shows the WSM upsampling block. First, we double the
spatial resolution of a feature map using a deconvolution layer. Then, we adopt
1 × 1 convolution layers to lower the feature dimension, before applying the
conventional 3 × 3 and 5 × 5 convolutional layers and the proposed W × 3 and
3 × H WSM layers. We concatenate all results to yield the output feature map.

The WSM upsampling is employed by the entire network in Fig. 1. We use
the ResNet-50 architecture in the encoding step, but remove the last two fully-
connected layers and instead add a 1 × 1 convolution layer to lower the feature
dimension since the last convolution layer of ResNet-50 yields a relative high fea-
ture dimension. For the decoding step, we cascade four WSM upsampling blocks
to increase the output spatial resolution to 160 × 128. Finally, through a 1 × 1
convolution layer, we obtain an estimated depth map ̂d. To train the network
in an end-to-end manner, we adopt the Euclidean loss to minimize the sum of
squared differences between the ith estimated depth d̂i and the corresponding
ground truth dgti . Table 1 presents detailed network configurations.
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Table 1. Configurations of the proposed network. Input and output sizes are given
by W × H × C, where W , H, and C are the width, height, and number of channels,
respectively.

Layer Name Input Input Size Output Size

Encoding ResNet-50 Image 304 × 228 × 3 10 × 8 × 2048

Conv1 ResNet-50 10 × 8 × 2048 10 × 8 × 1024

Decoding WSM-up1 Conv1 10 × 8 × 1024 20 × 16 × 1024

WSM-up2 WSM-up1 20 × 16 × 1024 40 × 32 × 512

WSM-up3 WSM-up2 40 × 32 × 512 80 × 64 × 256

WSM-up4 WSM-up3 80 × 64 × 256 160 × 128 × 128

Prediction WSM-up4 160 × 128 × 128 160 × 128 × 1

Refinement Rel1 WSM-up4 160 × 128 × 128 160 × 128 × 128

Rel2 Rel1 160 × 128 × 128 160 × 128 × 1

3.2 Depth Map Refinement

As shown in Fig. 6, even though the proposed depth estimation provides a
promising result, the estimated depth map d̂ still contains residual errors espe-
cially around object boundaries. In a wide variety of estimation problems,
attempts have been made not only to make an estimate, but also to measure the
reliability or confidence (or inversely uncertainty) of the estimate. For example,
in the classical depth-from-motion technique in [33], Matthies et al. predicted
depth and depth uncertainty at each pixel and incrementally refined the esti-
mates to reduce the uncertainty. In this work, we observe that the reliability of
an estimated depth can be quantified, surprisingly, using the same features from
the decoder for the depth estimation itself, as shown in Fig. 1.

We augment the network to learn the reliability. In Fig. 1, the reliability map
is obtained by adding only two 1 × 1 convolution layers ‘Rel1’ and ‘Rel2’ after
the final upsampling layer ‘WSM-up4.’ To train the two convolutional layers,
the absolute prediction error, |d̂i − dgti |, is defined as the ground-truth and the
Euclidean loss is employed. Thus, the output of the added convolution layers is
not a reliability value but an error estimate (or uncertainty). We hence normalize
the error estimate to [0, 1], and subtract the normalized result from 1 to yield the
reliability value. Figure 6(d) shows a reliability map α. We see that the reliability
map yields low values in erroneous areas in the actual error map in Fig. 6(c).

Next, based on the reliability map α, we model the conditional probability
distribution of the depth field d for the CRF optimization as p(d|̂d,α) = 1

Z ·
exp

(

−E(d, ̂d,α)
)

where E is an energy function and Z is the normalization
term. The energy function is given by

E(d, ̂d,α) = U(d, ̂d,α) + λ · V (d,α) (1)

where U is a unary term to make the refined depth d similar to the estimated
depth ̂d and V is a pairwise term to make each refined depth similar to the
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weighted sum of adjacent depths. Also, λ controls a tradeoff between the two
terms. The unary term is defined as

U(d, ̂d,α) =
∑

i

αi

(

di − d̂i
)2 (2)

where di, ̂di, and αi denote the refined depth, estimated depth, and reliability of
pixel i, respectively. By employing αi, we strongly encourage a refined depth to
be similar to an estimated depth only if the estimated depth is reliable. In other
words, when an estimated depth is unreliable, it can be modified significantly to
yield a refined depth during the CRF optimization.

Fig. 6. An example of the reliability map. In (c) and (d), a bright color indicates a
higher value than a dark one.

To model the relation between neighboring pixels, we use the auto-regression
model, which are employed in various applications, such as image matting [34],
depth recovery [35], and monocular depth estimation [17]. In addition, to take
advantage of the different characteristics of image and depth map, we use the
color similarity introduced in [36,37]. In this work, we generalize the color-guided
auto-regression model in [35], based on the reliability map, to define the pairwise
term

V (d,α) =
∑

i

(

di −
∑

j∈Ni

ωijdj

)2

(3)

where Ni is the 11 × 11 neighborhood of pixel i. Also, ωij is the similarity
between pixel i and its neighbor j, given by

ωij =
αj

T
· exp

(

−
∑

c∈C ‖Bi ◦ (Sc
i − Sc

j )‖22
2 · 3 · σ2

1

)

(4)

where Sc
i denotes the 5 × 5 patch centered at pixel i, extracted from color

channel c of the image, and C is the set of three YUV color channels. Also, ◦
represents the element-wise multiplication, σ1 is a weighting parameter, and T
is the normalization factor. The color-guided kernel Bi is defined on the 5 × 5
patch centered at pixel i, and its element corresponding to neighbor pixel k is
given by

Bi,k = exp
(

−
∑

c∈C (Ici − Ick)
2

2 · 3 · σ2
2

)

(5)
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where Ici is the image value of pixel i in channel c, and σ2 is a parameter.
The exponential term in (4), through the pairwise term V in (3), encourages
neighboring pixels with similar colors to have similar depths. Moreover, because
of αj in (4), we constrain the depth of pixel i to be more similar to that of
neighbor pixel j, when neighbor pixel j is more reliable. This causes the depths
of reliable pixels to propagate to those of unreliable ones, improving the accuracy
of the overall depth map.

We can rewrite the energy function in (1) in vector notations.

E(d, ̂d,α) = (d − ̂d)TA(d − ̂d) + λ (d − Wd)T (d − Wd) (6)

where A is the diagonal matrix whose ith diagonal element is αi, and W � [ωij ]
is the weight matrix. Finally, the refined depth ˜d can be obtained by solving the
maximum a posteriori (MAP) inference problem:

˜d = arg max
d

p(d|̂d,α) = arg min
d

E(d, ̂d,α). (7)

Since the energy function is quadratic, the closed-form solution is given by

˜d = (A + λ (I − W)T (I − W))−1Âd. (8)

4 Experiments

4.1 Experimental Setup

Implementation details: We implement the proposed network using the Caffe
library [38] on an NVIDIA GPU with 12GB memory. We initialize the backbone
network in the encoder with the pre-trained weights, and initialize the other
parameters randomly. We train the network in two phases. First, we train the
depth estimation network, composed of the encoding and decoding parts. The
learning rate is initialized at 10−7 and decreased by 10 times when training
errors converge. The batch size is set to 4. The momentum and the weight decay
are set to typical values of 0.9 and 0.0005. Second, we fix the parameters of the
encoding and decoding parts and then train the refinement part. The learning
rate starts at 10−8, while the batch size, the momentum, and the weight decay
are the same as the first phase. The parameters λ in (1), σ1 in (4), and σ2 in (5)
is set to 1.5, 6.5, and 0.1. It takes about two days to train the whole network.
Evaluation metrics: For quantitative evaluation, we assess the proposed monoc-
ular depth estimation algorithm based on the four evaluation metrics [8,13,14].

– Average absolute relative error (rel): 1
N

∑

i
|d̂i−dgt

i |
dgt
i

– Average log10 error (log10):
1
N

∑

i |log10(d̂i) − log10(d
gt
i )|

– Root mean squared error (rms):
√

1
N

∑

i (d̂i − dgti )2

– Accuracy with threshold t: percentage of d̂i such that max{dgt
i

d̂i
, d̂i

dgt
i

} = δ < t
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Table 2. Comparison of various network models on the NYU dataset. A number in
the third column is the number of parameters in both encoder and decoder.

Encoding Decoding Parameters rel rms

AlexNet FC 106M 0.215 0.833

Deconv 6.7M 0.204 0.842

VGGNet-16 FC 60M 0.183 0.776

Deconv 18.5M 0.194 0.746

ResNet-50 FC 74M 0.160 0.626

Deconv 53.5M 0.152 0.602

Deconv-Conv 66.0M 0.149 0.604

UpProj [19] 63.6M 0.145 0.596

Inception 62.1M 0.148 0.607

Equivalent 61.0M 0.150 0.595

WSM 61.1M 0.141 0.582

4.2 NYU Depth Dataset V2

We evaluate the proposed algorithm on the large RGB-D dataset, NYU Depth
Dataset V2 [31]. It contains 120 K pairs of RGB and depth images, captured
with Microsoft Kinect devices, with 249 scenes for training and 215 scenes for
testing. Each image or depth has a spatial resolution of 640 × 480. We uniformly
sample frames from the entire training scenes and extract approximately 24 K
unique pairs. Using the colorization tool [34] provided with the dataset, we fill in
missing values of depth maps automatically. Since an image and its depth map
are not perfectly synchronized, we eliminate top 2 K erroneous samples, after
training the depth estimation network for one epoch. We perform the online
data augmentation schemes Scale, Flip, and Translataion, introduced in [13].
Also, as in [15,21], we center-crop images to 561 × 427 pixels containing valid
depths, and then downsample them to 304 × 228 pixels, which are used as the
input to the network. For the evaluation, we upsample the estimated depth map
to the original size 561 × 427 through the bilinear interpolation and compare
the result against the ground-truth depth map.

Comparison of network models: Table 2 compares the proposed algorithm with
other network models. First, we test how the depth estimation performance is
affected when a different backbone network (AlexNet [25], VGGNet16 [26], or
ResNet-50 [20]) is adopted as the encoder. In this test, we use the fully-connected
layer ‘FC’ or the deconvolution block ‘Deconv’ as the decoder. Specifically, FC is
a fully-connected layer of 1280 (= 40 × 32) dimensions directly connected to an
output feature map of the encoder. Deconv is the upsampling block, composed
of four 3 × 3 deconvolution layers only. As the backbone network gets deeper
from AlexNet to ResNet-50, the depth estimation performance is improved.

Next, we compare the performances of various decoders, after fixing ResNet-
50 as the encoder. ‘Deconv-Conv’ is the decoder, composed of four pairs of 3 × 3
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Fig. 7. Verifying reliability values and the reliability-based refinement. The line plot
with the left axis shows the average absolute error for each quantized reliability value.
The bar plot with the right axis shows the decreasing rate of the average error due to
the refinement with or without reliability α.

deconvolution layer and 5 × 5 convolution layer. ‘UpProj’ is the Laina et al.’s
decoder [19]. ‘Inception’ [32] uses a 7 × 7 convolution layer instead of the W × 3
and 3 × H WSM layers in Fig. 5. Similarly, ‘Equivalent’ replaces the two WSM
layers with a square convolution layer, but set the square size to be about the
same as the sum of 3 × H and W × 3. Consequently, Equivalent and the proposed
WSM decoder require similar numbers of parameters. The output resolution is
160 × 128 except for FC, which yields 40 × 32 output because of GPU memory
constraints. The WSM decoder provides outstanding performances. Especially,
note that WSM significantly outperforms Equivalent, which is another method
using large kernels. This indicates that the improved performance of WSM is
made possible not only by the use of large kernels, but also because horizontally
or vertically flat characteristics of depth maps are exploited. Moreover, despite
the large kernels, the proposed WSM algorithm requires a moderate number of
parameters, and in fact demands less than Deconv-Conv, UpProj, and Inception.

Efficacy of Refinement Step: The line graph in Fig. 7 shows the absolute average
error for each quantized reliability value. As the reliability value increases, the
average error decreases. This indicates that the proposed algorithm correctly
predicts the confidence of an estimated depth using the reliability map.

The bar graph in Fig. 7 plots how the proposed reliability-based refinement
decreases the average error. To confirm its impacts comparatively, we also pro-
vide the refinement result without the reliability, i.e. when α is fixed to 1 in (2)
and (4). With the adaptive reliability, we see that the error decreases by up to
2.9%. In particular, estimation errors are significantly decreased by the refine-
ment step, especially for the pixels with low reliability values. On the other hand,
without the reliability, there are only little changes in the errors.

Figure 8 shows point cloud rendering results of depth maps with and without
the refinement step. We see that the refinement separates the objects from the
background more clearly and more accurately.
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Fig. 8. Point cloud rendering of depth maps with or without the refinement step.

Comparison with the State-of-the-Arts: Table 3 compares the proposed algorithm
with eleven conventional algorithms [8,12–19,21,39]. We report the performances
of two versions of the proposed algorithm: ‘WSM’ uses only the depth estimation
network and ‘WSM-Ref’ performs the reliability-based refinement additionally.
Note that both WSM and WSM-Ref outperform all conventional algorithms.

Figure 9 compares the depth maps of the proposed algorithm with those of the
state-of-the-art monocular depth estimation algorithms [14,18,19] qualitatively.
The proposed WSM and WSM-Ref generate more faithful depth maps than
the conventional algorithms. Through WSM, both WSM and WSM-Ref recon-
struct flat depths on the walls more accurately. Moreover, WSM-Ref improves
the depth maps through the reliability-based refinement. For instance, WSM-Ref
reconstructs the detailed depths of the objects on the desk in the first row and
the chairs in the second and third rows more precisely.

4.3 Make3D

We also test the proposed algorithm on the outdoor dataset Make3D [10], which
contains 534 pairs of RGB and depth images: 400 pairs for training and 134 for
testing. There is a difference of resolutions between RGB images (1704 × 2272)
and depth images (305 × 55). Since the dataset is not large enough for training
a deep network, training on Make3D needs a careful strategy. We follow the
strategy of [15,19]. Specifically, we resize RGB images to 345 × 460 pixels and
downsample them to 173 × 230 pixels. Since Make3D expresses depths up to 80 m
only, the depths of far objects, e.g. sky, are often inaccurate. Thus, we train the
network after masking out pixels with depths over 70m. This criterion, called
C1, was first suggested by [21] and has been used in [15,19,21]. We perform
online data augmentation, as done in the case of the NYU dataset. All the other
parameters are the same. For evaluation, we upsample an estimated depth map
to 345 × 460 and compare the result against the ground-truth depth map, which
is also upsampled to 345 × 460. We only compute the errors in regions of depths
less than 70 m (C1 criterion).

Table 4 compares the proposed algorithm with conventional algorithms [12,
15,17,19,21]. Again, the proposed WSM-Ref outperforms all conventional algo-
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Table 3. Quantitative comparison on the NYU Depth Dataset V2 [31]. The best
performance is boldfaced, and the second best is underlined.

Methods Error (↓) Accuracy (↑)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Karsch et al. [12] 0.374 0.134 1.12 - - -

Ladicky et al. [8] - - - 0.542 0.829 0.941

Liu et al. [21] 0.335 0.127 1.06 - - -

Li et al. [17] 0.232 0.094 0.821 0.621 0.886 0.968

Liu et al. [15] 0.230 0.095 0.824 0.614 0.883 0.971

Wang et al. [16] 0.220 0.094 0.745 0.605 0.890 0.970

Eigen et al. [13] 0.215 0.095 0.907 0.611 0.887 0.971

Eigen et al. [14] 0.158 0.067 0.641 0.769 0.950 0.988

Chakrabarti et al. [18] 0.149 0.062 0.620 0.806 0.958 0.988

Li et al. [39] 0.143 0.063 0.635 0.788 0.958 0.991

Laina et al. [19] 0.140 0.060 0.597 0.811 0.953 0.988

WSM 0.141 0.060 0.582 0.811 0.962 0.991

WSM-Ref 0.135 0.058 0.571 0.816 0.964 0.992

Fig. 9. Qualitative comparison: (a) input image, (b) ground-truth, (c) Eigen et al. [14],
(d) Chakrabarti et al. [18], (e) Laina et al. [19], and (f) the proposed WSM, and (g)
the proposed WSM-Ref.
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rithms. Figure 10 shows qualitative results. The proposed WSM-Ref yields faith-
ful depth maps, and the reliability maps detect erroneous regions effectively.
These experimental results indicate that the proposed algorithm is a promising
solution to monocular depth estimation for both indoor and outdoor scenes.

Fig. 10. Depth estimation of the proposed WSM-Ref on the Make3D dataset: (a) input,
(b) ground-truth, (c) estimation result, (d) reliability map, and (e) error map. In (d)
and (e), a bright color indicates a higher value than a dark one.

Table 4. Comparison of quantitative results on the Make3D dataset.

Methods rel log10 rms

Karsch et al. [12] 0.355 0.127 9.20

Liu et al. [21] 0.335 0.137 9.49

Liu et al. [15] 0.314 0.119 8.60

Li et al. [17] 0.278 0.092 7.19

Laina et al. [19] 0.176 0.072 4.46

WSM 0.185 0.073 4.85

WSM-Ref 0.171 0.063 4.46

5 Conclusions

In this work, we proposed a monocular depth estimation algorithm based on the
WSM upsampling and the reliability-based refinement. First, we developed the
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WSM layers to exploit the horizontally or vertically flat characteristics of depth
maps. We constructed the depth estimation network by stacking WSM upsam-
pling blocks upon the ResNet-50 encoder. Second, we measured the reliability
of each estimated depth, and exploited the information to refine the depth map
through the CRF optimization. Experimental results showed that the proposed
algorithm significantly outperforms the conventional algorithms on both indoor
and outdoor datasets, while requiring a moderate number of parameters.
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