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Abstract. This paper improves state-of-the-art visual object trackers
that use online adaptation. Our core contribution is an offline meta-
learning-based method to adjust the initial deep networks used in online
adaptation-based tracking. The meta learning is driven by the goal of
deep networks that can quickly be adapted to robustly model a particu-
lar target in future frames. Ideally the resulting models focus on features
that are useful for future frames, and avoid overfitting to background
clutter, small parts of the target, or noise. By enforcing a small number
of update iterations during meta-learning, the resulting networks train
significantly faster. We demonstrate this approach on top of the high per-
formance tracking approaches: tracking-by-detection based MDNet [1]
and the correlation based CREST [2]. Experimental results on standard
benchmarks, OTB2015 [3] and VOT2016 [4], show that our meta-learned
versions of both trackers improve speed, accuracy, and robustness.

1 Introduction

1 Visual object tracking is a task that locates target objects precisely over a
sequence of image frames given a target bounding box at the initial frame. In
contrast to other object recognition tasks, such as object category classifica-
tion and detection, in visual object tracking, instance-level discrimination is an
important factor. For example, a target of interest could be one particular person
in a crowd, or a specific product (e.g. coke can) in a broader category (e.g. soda
cans). Therefore, an accurate object tracker should be capable of not only recog-
nizing generic objects from background clutter and other categories of objects,
but also discriminating a particular target among similar distractors that may
be of the same category. Furthermore, the model learned during tracking should
be flexible to account for appearance variations of the target due to viewpoint
change, occlusion, and deformation.

1 The code is available at https://github.com/silverbottlep/meta trackers.
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One approach to these challenges is applying online adaptation. The model
of the target during tracking, e.g. DCF (discriminative correlation filter) or
binary classifier (the object vs backgrounds), is initialized at the first frame
of a sequence, and then updated to be adapted to target appearance in subse-
quent frames [1,2,5–10]. With the emergence of powerful generic deep-learning
representations, recent top performing trackers now leverage the best of both
worlds: deep learned features and online adaptation methods. Offline-only track-
ers trained with deep methods have also been suggested, with promising results
and high speed, but with a decrease in accuracy compared to state-of-the-art
online adaptive trackers [11–13], perhaps due to difficulty finely discriminating
specific instances in videos.

A common practice to combine deep learning features and online adaptation
is to train a target model on top of deeply learned features, pre-trained over a
large-scale dataset. These pre-trained features have proven to be a powerful and
broad representation that can recognize many generic objects, enabling effective
training of target models to focus on the specified target instance. Although
this type of approach has shown the best results so far, there remain several
important issues to be resolved.

First, very few training examples are available. We are given a single bound-
ing box for the target in the initial frame. In subsequent frames, trackers collect
additional images, but many are redundant since they are essentially the same
target and background. Furthermore, recent trends towards building deep mod-
els for target appearance [1,2] make the problem more challenging since deep
models are known to be vulnerable to overfitting on small datasets. As a con-
sequence, a target model trained on top of deeply learned features sometimes
suffers because it overfits to background clutter, small parts or features of the
target, or noise. Many recent studies have proposed various methods to resolve
these issues. Some include using a large number of positive and negative sam-
ples with aggressive regularizers [1], factorized convolution [6], spatio-residual
modules [2], or incorporating contextual information [14].

Second, most state-of-the-art trackers spend a significant amount of time on
the initial training stage [1,2,6]. Although many works have proposed fast train-
ing methods [6,7], this still remains a bottleneck. In many practical applications
of object tracking, such as surveillance, real-time processing is required. Depend-
ing on the application, falling behind on the initial frame could mean failure on
the whole task. On the other hand, an incompletely trained initial target model
could affect performance on future frames, or in the worst case, result in failures
on all subsequent frames. Therefore, it is highly desirable to obtain the robust
target model very quickly at the initial frame.

In this work, we propose a generic and principled way of tackling these chal-
lenges. Inspired by recent meta-learning (learning to learn) studies [15–20], we
seek to learn how to obtain the target model. The key idea is to train the tar-
get model in a way that generalizes well over future frames. In all previous
works [1,2,5–10], the target model is trained to minimize a loss function on the
current frame. Even if the model reaches an optimal solution, it does not nec-
essarily mean it would work well for future frames. Instead, we suggest to use
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error signals from future frames. During the meta-training phase, we aim to find
a generic initial representation and gradient directions that enable the target
model to focus on features that are useful for future frames. Also, this meta-
training phase helps to avoid overfitting to distractors in the current frame. In
addition, by enforcing the number of update iterations during meta-training, the
resulting networks train significantly faster during the initialization.

Our proposed approach can be applied to any learning based tracker with
minor modifications. We select two state-of-the-art trackers, MDNet [1], from the
classifier based tracker (tracking-by-detection) category, and CREST [2], a cor-
relation based tracker. Experimental results show that our meta-learned version
of these trackers can adapt very quickly—just one iteration—for the first frame
while improving accuracy and robustness. Note that this is done even without
employing some of the hand engineered training techniques, sophisticated archi-
tectural design, and hyperparameter choices of the original trackers. In short,
we present an easy way to make very good trackers even better without too
much effort, and demonstrate its success on two different tracking architectures,
indicating potentially general applicability.

2 Related Work

Online Trackers: Many online trackers use correlation filters as the back-bone
of the algorithms due to computational efficiency and discriminative power. From
the early success of the MOSSE tracker [10], a large number of variations have
been suggested. [7] makes it more efficient by taking advantage of circulant matri-
ces, further improved by resolving artificial boundary issues [21,22]. Many hard
cases have been tackled by using context information [14,23], short and long-
term memory [24,25], and scale-estimation [26], just to name a few. Recently,
deep learning features have begun to play an important role in correlation fil-
ters [1,2,5,6,8,27,28]. On the other hand, tracking-by-detection approaches typ-
ically learn a classifier to pick up the positive image patches wrapping around
the target object. Pioneered by [9], many learning techniques have been sug-
gested, e.g. multiple instance learning [29], structured output SVMs [30], online
boosting [31], and model ensembles [32]. More recently, MDNet [1], with deep
features and a deep classifier, achieved significantly higher accuracy.

Offline Trackers: Several recent studies have shown that we can build accu-
rate trackers without online adaptation [11–13] due to powerful deep learning
features. Siamese-style networks take a small target image patch and a large
search image patch, and directly regress the target location [12] or generate a
response map [11] via a correlation layer [33]. In order to consider temporal
information, recurrent networks have also been explored in [34–37].

Meta-learning: This is an emerging field in machine learning and its applica-
tions. Although it is not a new concept [38–41], many recent works have shown
very promising results along with deep learning success. [17,42–44] attempted
to replace hand-crafted optimization algorithms with meta-learned deep net-
works. [16] took this idea into few shot or one shot learning problem. It aimed
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Fig. 1. Our meta-training approach for visual object tracking: a computational graph
for meta-training object trackers. For each iteration, it gets the gradient with respect
to the loss after the first frame, and a meta-updater updates parameters of the tracker
using those gradients. For added stability and robustness a final loss is computed using
a future frame to compute the gradients w.r.t parameters of meta-initializer and meta-
updater. More details in Sect. 3.

to learn optimal update strategies based on how accurate a learner can classify
test images with few training examples when the learner follows the strategies
from the meta-learner. Instead of removing existing optimization algorithms,
[15] focuses on learning initialization that are most suitable for existing algo-
rithms. [19] further learns parameters of existing optimization algorithms along
with the initialization. Unlike approaches introduced above, there also have been
several studies to directly predict the model parameters without going through
the optimization process [37,45,46] (Fig. 1).

3 Meta-learning for Visual Object Trackers

In this section, we explain the proposed generalizable meta-training framework
for visual object trackers. The details for applying this to each tracker are found
in Sect. 4.

3.1 Motivation

A typical tracking episode is as follows: The tracking model is adapted to a
specified bounding box around the target in the initial frame of a sequence.
Aggressive regularizers and fast optimization techniques are adopted to allow
this adaptation/training to be done quickly so that the resulting model is robust
to target variations and environment changes. Then, the tracking model is used
to predict the target location in subsequent frames. Predicted target locations
and images are then stored in the database, and the models are regularly updated
with collected data according to their own strategies.
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A key motivation is to incorporate these actual tracking scenarios into the
meta-learning process. The eventual goal of trackers is to predict the target
locations in future frames. Thus, it would be desirable to learn trackers with
this eventual goal. For example, if we could look at variations in future frames,
then we could build more robust target models and prevent them from overfitting
to the current target appearance or background clutter. We can take a step back
and observe trackers running on videos, see if the trackers generalize well, and
find a reason why they become distracted and adjust the adaptation procedure
accordingly.

3.2 A General Online Tracker

This formulation of online tracking is made general in order to apply to a variety
of trackers. Consider the key operation in a tracker, ŷ = F (x, θ), that takes an
input x, e.g. image patches around the target or a cropped image centered on
putative target from an image I, and the tracker parameters θ and produces
an estimate ŷ of the label, e.g. a response map or a location in the frame that
indicates the target position. For initialization, x0 from the initial frame I0
with specified y0, we (approximately) solve for θ1(x0, y0), or θ1 for brevity, with
respect to a loss, L (F (x0, θ1) , y0), measuring how well the model predicts the
specified label. For updates during tracking, we take the parameters θj from
frame j − 1 and find ŷj = F (xj , θj), then find θj+1 with respect to a loss. Then,
we may incorporate transforming ŷj into a specific estimate of the target location
as well as temporal smoothing, etc. We can write the tracking process initialized
with x0 and y0 in an initial frame and then proceeding to track and update for
frames I1 . . . In as Track (θ1(x0, y0), I1, . . . , In) and its output as ŷn, an estimate
of the label in the nth frame (indicating target position) and θn+1, the model
parameters after the nth frame.

3.3 Meta-training Algorithm

Our meta-training approach has two goals. One is that initialization for a tracker
on a sequence can be performed by starting with θ0 and applying one or a very
small number of iterations of a update function M parameterized by α. Another
goal is that the resulting tracker be accurate and robust on later frames.

The gradient-descent style update function M is parameterized by α:

M(θ,∇θL;α) = θ − α � ∇θL, (1)

where α is the same size as the tracker parameters θ [19], L is a loss func-
tion, and � is element-wise product. α could be a scalar value, which might be
either learnable [20] or manually fixed [15]. We empirically found that having
per parameter coefficients was the most effective in our settings.

Our meta-training algorithm is to find a good θ0 and α by repeatedly sam-
pling a video, performing initialization, applying the learned initial model to a
frame slightly ahead in the sequence, and then back-propagating to update θ0
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Algorithm 1. Meta-training object trackers algorithm
Input: Randomly initialized θ0 and α, training dataset D
Output: θ∗

0 and α∗

1: while not converged do
2: gradθ0

, gradα = 0 � Initialize to zero vector
3: for all k ∈ {0, . . . , Nmini − 1} do
4: S, j, δ ∼ p(D) � Sample a training example
5: θ0

0 = θ0
6: for all t ∈ {0, . . . , T − 1} do
7: ŷj = F (xj , θ

t
0)

8: θt+1
0 = θt

0 − α � ∇θt
0
L(yj , ŷj ; θ

t
0)

9: end for
10: θ1 = θT

0

11: ŷj+δ = F (xj+δ, θ1) � Apply to a future frame
12: gradθ0

= gradθ0
+ ∇θ0L(yj+δ, ŷj+δ) � Accumulate the gradients

13: gradα = gradα + ∇αL(yj+δ, ŷj+δ)
14: end for
15: θ0 = Optimizer(θ0, gradθ0

) � Update θ0
16: α = Optimizer(α, gradα) � Update α
17: end while

and α. Applying the initial model to a frame slightly ahead in the sequence has
two goals, the model should be robust enough to handle more than frame-to-
frame variation, and if so, this should make updates during tracking fast as well
if not much needs to be fixed.

After sampling a random starting frame from a random video, we perform
optimization for initialization starting with θ00 = θ0 given the transformed input
and output pair, (xj , yj). A step of optimization proceeds as

θi+1
0 = M(θi

0,∇θi
0
L(yj , F (xj , θ

i
0))). (2)

This step can be repeated up to a predefined number of times T to find,
θ1(xj , yj) = θT

0 . Then, we randomly sample a future frame Ij+δ and evalu-
ate the model trained on the initial frame on that future frame to produce:
ŷj+δ = F (xj+δ, θ1).

The larger δ, the larger target object variations and environment changes are
incorporated into training process. Now, we can compute the loss based on the
future frame and trained tracker parameters. The objective function is defined
as

θ∗
0 , α

∗ = argmin
θ0,α

ES,j,δ[L(yj+δ, ŷj+δ)]. (3)

We used the ADAM [47] gradient descent algorithm to optimize. Note that θ0 and
α are fixed across different episodes in a mini-batch, but θ10, . . . , θ

T
0 are changed

over every episode. To compute gradients of the objective function w.r.t θ0 and
α, it is required to compute higher-order gradients (the gradients of function of
gradients). This type of computation has been exploited in recent studies [15,
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(a) (b)

Fig. 2. (a) MetaCREST (b) MDNet vs MetaSDNet

48,49]. We can easily compute this thanks to automatic differentiation software
libraries [50]. More details are explained in Algorithm1.

Update Rules for Subsequent Frames. Most online trackers, including the
two trackers we meta-train (Sect. 4), update the target model regularly to adjust
to new examples collected by itself during tracking. We could simply use meta-
trained α to update the model, θj = θj−1 − α � ∇θj−1L (only one iteration
presented for brevity). However, it often diverges on longer sequences or the
sequences that have very small frame-to-frame variations. We believe this is
mainly because we train α for fast adaptation at the initial frame, so the values
of α are relatively large, which causes unstable convergence behavior (A similar
phenomenon was reported in [20] albeit in a different context). Since α is stable
when it teams up with θ0, we could define the update rules for subsequent
frames as θj = θ0 − α � ∇θ0L, as suggested in [20]. We could also combine two
strategies, θj = β(θj−1 − α � ∇θj−1L) + (1 − β)(θ0 − α � ∇θ0L). Although we
could resolve unstable convergence behavior with these strategies, none of these
performed better than simply searching for a single learning rate. Therefore, we
find a learning rate for subsequent frames and then use existing optimization
algorithms to update the models as was done in the original versions of the
trackers.

4 Meta-trackers

In this section, we show how our proposed meta-learning technique can be real-
ized in state-of-the-art trackers. We selected two different types of trackers, one
from correlation based trackers, CREST [2], and one from tracking-by-detection
based trackers MDNet [1].

4.1 Meta-training of Correlation Based Tracker

CREST. A typical correlation filter objective is defined as follows.

argmin
f

||y − Φ(x) ∗ f ||2 + λ||f ||2, (4)
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where f is the correlation filter, ∗ is the convolution operation, and Φ is a feature
extractor, e.g. CNN. x is a cropped image centered on the target, and y ∈ R

H×W ,
is a gaussian shaped response map, where H and W are height and width,
respectively. The cropped image is usually larger than the target object so that
it can provide enough background information. Once we have the correlation
filter trained, target localization at a new future frame is simply finding the
coordinates (h,w) that has the maximum response value.

argmax
(h,w)

ŷ(h,w), (5)

where ŷ = Φ(xnew) ∗ f , and ŷ(h,w) represents the element of ŷ in (h,w) coordi-
nates. CREST used a variation of the correlation filter objective, defined as

∑

(h,w)∈P

1
|P | (e

y(h,w)|y(h,w) − ŷ(h,w)|)2 + λ||f ||2, (6)

where P = {(h,w) | |y(h,w) − ŷ(h,w)| > 0.1}. This would encourage the model
to focus on parts that are far from the ground truth values.

By reformulating the correlation filter as a convolutional layer, it can be
effectively integrated into an CNN framework [2]. This allows us to add new
modules easily, since the optimization can be nicely done with standard gradient
descent in end-to-end fashion. They inserted spatio-temporal residual modules to
avoid target model degradation by large appearance changes. They also devised
sophisticated initialization, learning rates, and weight decay regularizers, e.g.
1000 times larger weight decay parameter on spatio-temporal residual modules.
Without those bells and whistles, we aim to learn a robust single layer correlation
filter via proposed meta-learning process. There are two important issues for
plugging CREST tracker into proposed meta-training framework, and we present
our solutions in following sections.

Meta-learning Dimensionality Reduction. CREST used PCA to reduce the
number of channels of extracted CNN features, from 512 to 64. This not only
reduces computational cost, but also it helps to increase robustness of the corre-
lation filter. PCA is performed at the initial frame and learned projection matrix
are used for the rest of the sequence. This becomes an issue when meta-training
the correlation filter. We seek to find a global initialization of the correlation
filter for the all targets from different episodes. However, PCA would change the
basis for every sequences, which makes impossible to obtain a global initializa-
tion in projected feature spaces that are changing every time. We propose to
learn to reduce dimensions of the features. In CREST, we can insert 1× 1 con-
volution layer right after the feature extraction, the weights of this layer are also
meta-learnable and jointly trained during the meta-learning process along with
the correlation filter. θ0 in proposed meta-training framework, therefore, consists
of θ0d and θ0f , the parameters of dimensionality reduction and the correlation
filter, respectively.

Canonical Size Initialization. The size of the correlation filter varies depend-
ing on the target shape and size. In order to meta-train a fixed size initialization
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of the correlation filter θ0f , we should resize all objects to the same size and
same aspect ratio. However, it introduces distortion of the target and has been
known to degrade recognition performance [51,52]. In order to fully make use of
the power of the correlation filter, we propose to use canonical size initialization
and its size and aspect ratio are calculated as a mean of the objects in the train-
ing dataset. Based on canonical size initialization, we warp it to the specific size
taylored to the target object for each tracking episodes, θ̃0f = Warp(θ0f ). We
used differentiable bilinear sampling method [53] to pass through gradients all
the way down to θ0f .

Putting it all together, F (xj , θ) in our proposed meta-training framework for
CREST, now takes an input a cropped image xj from an input frame Ij , pass
it through a CNN feature extractor followed by dimensionality reduction (1× 1
convolution with the weight θ0d). Then, it warps the correlation filter θ0f , and
finally apply warped correlation filter θ̃0f to produce a response map ŷj (Fig. 2a).

4.2 Meta-training of Tracking-by-Detection Tracker

MDNet. MDNet is based on a binary CNN classifier consisting of a few of
convolutional layers and fully connected layers. In the offline phase, it uses a
multi-domain training technique to pre-train the classifier. At the initial frame, it
randomly initializes the last fully connected layer, and trains around 30 iterations
with a large number of positive and negative patches (Fig. 2b). Target locations
in the subsequent frames are determined by average of bounding box regression
outputs of top scoring positive patches. It collects positive and negative samples
during the tracking process, and regularly updates the classifier. Multi-domain
pre-training was a key factor to achieve robustness, and they used an aggressive
dropout regularizer and different learning rates at different layers to further
avoid overfitting to current target appearance. Without those techniques (the
multi-domain training and regularizers), we aim to obtain robust and quickly
adaptive classifier solely resting on the proposed meta-learning process.

Meta-training. It can be also easily pluged into the proposed meta-leraning
framework. F (xj ; θ) takes as input image patches xj ∈ R

N×D from an input
frame Ij (and yj ∈ {0, 1}N is the corresponding labels), where D is the
size of the patches and N is the number of patches. Then, the patches go
through a CNN classifier, and the loss function L is a simple cross entropy
loss −∑N

k=1 yk
j log(F k(xj ; θ)).

Label Shuffling. Although a large-scale video detection dataset contains rich
variation of objects in videos, the number of objects and categories are limited
compared to other still image datasets. This might lead a deep CNN classifier to
memorize all object instances in the dataset and classify newly seen objects as
backgrounds. In order to avoid this issue, we adopted the label shuffling trick,
suggested in [18]. Every time we run a tracking episode, we shuffle the labels,
meaning sometimes labels of positive patches become 0 instead of 1, negative
patches become 1 instead of 0. This trick encourages the classifier to learn how
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to distinguish the target objects from background by looking at current training
examples, rather than memorizing specific targets appearance.

5 Experiments

5.1 Experimental Setup

VOT2016. It contains 60 videos (same videos from VOT 2015 [54]). Trackers
are automatically reinitialized once it drifts off the target: zero overlap between
predicted bounding box and the ground truth. In this reset-based experiments,
three primary measures have been used, (i) accuracy, (ii) robustness and (iii)
expected average overlap (EAO). The accuracy is defined as average overlap
during successful tracking periods. The robustness is defined as how many times
the trackers fail during tracking. The expected average overlap is an estimator
of the average overlap a tracker is expected to attain on a large collection of
short-term sequences.

OTB2015. It consists of 100 fully annotated video sequences. Unlike VOT2016,
the one pass evaluation (OPE) is commonly used in OTB dataset (no restart
at failures). The precision plots (based on the center location error) and the
success plots (based on the bounding box overlap) are used to access the tracker
performance.

Dataset for Meta-training. We used a large scale video detection dataset [55]
for meta-training both trackers. It consists of 30 object categories, which is a sub-
set of 200 categories in the object detection dataset. Since characteristics of the
dataset are slightly different from the object tracking dataset, we sub-sampled
the dataset. First, we picked a video frame that contains a target object whose
size is not larger than 60% of the image size. Then, a training video sequence
is constructed by sampling all subsequent frames from that frame until the size
of the target object reaches 60%. We ended up having 718 video sequences.
In addition, for the experiments on OTB2015 dataset, we also used an addi-
tional 58 sequences from object tracking datasets in VOT2013,VOT2014, and
VOT2015 [4], excluding the videos included in OTB2015, following MDNet’s
approach [1]. These sequences were selected in the mini-batch selection stage
with the probability 0.3. Similarly, we used 80 sequences from OTB2015, exclud-
ing the videos in VOT2016 for the experiments on VOT2016 dataset.

Baseline Implementations. We selected two trackers, MDNet [1] and
CREST [2]. For CREST, we re-implemented our own version in python based
on publicly released code written in MATLAB. We meta-trained our version.
For MDNet, the authors of MDNet provide two different source codes, written
in MATLAB and python, respectively. We used the latter one and called it as
pyMDNet or pySDNet, depending on pre-training methods. We meta-trained
pySDNet, and call it as MetaSDNet. Note that overall accuracy of pyMDNet
is lower than MDNet on OTB2015 (.652 vs .678 in success rates with overlap
metric). For fair comparison, we compared our MetaSDNet to pyMDNet.
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Meta-training Details. In MetaSDNet, we used the first three conv layers from
pre-trained vgg16 as feature extractors. During meta-training, we randomly ini-
tialized the last three fc layers, and used Adam as the optimizer with learning
rate 1e–4. We only updated the last three fc layers for the first 5,000 iterations
and trained all layers for the rest of iterations. The learning rate was reduced
to 1e–5 after 10,000 iterations, and we trained up to 15,000 iterations. For α,
we initialized to 1e–4, and also used Adam with learning rate 1e–5, then was
decayed to 1e–6 after 10,000 iterations. We used mini-batch size Nmini = 8. For
the meta-update iteration T , larger T gave us only small improvement, so we
set to 1. For each training episode, we sample one random future frame uni-
formly from 1 to 10 ahead. In MetaCREST, we randomly initialized θ0 and also
used Adam with learning rate 1e–6. For α, we initialized to 1e–6, and learn-
ing rate of Adam was also set to 1e–6. Nmini = 8 and meta-training iterations
was 10,000 (at 50,000 iterations, the learning rate was reduced to 1e–7). We used
same hyper-parameters for both OTB2015 and VOT2016 experiments. For other
hyper-parameters, we mostly followed the ones in the original trackers. For more
details, the code and raw results will be released.

5.2 Experimental Results

Quantitative Evaluation. Table 1 shows quantitative results on VOT2016. In
VOT2016, EAO is considered as the main metric since it consider both accuracy
and robustness. Our meta-trackers, both MetaCREST and MetaSDNet, consis-
tently improved upon their counterparts by significant margins. Note that this is
the improvement without their advanced techniques, e.g. pyMDNet with special-
ized multi-domain training and CREST with spatio-temporal residual modules.
The performances of the accuracy metric are not very different than the origi-
nal trackers. Because it computes the average overlap by only taking successful
tracking periods into account, we did not change other factors that might affect
the accuracy in the original trackers, e.g. scale estimation. Quantitative results
on OTB2015 are depicted in Fig. 3. Both of MetaSDNet and MetaCREST also
improved upon their counterparts in both precision and success plots with only
one iteration for initialization. Detailed results of individual sequences in both
of VOT2016 and OTB2015 are presented in Appendix.

We require only one iteration at the initial frame to outperform the original
trackers. We also performed the experiments with more than one iteration, but
the performance gain was not significant. On the other hand, MDNet takes 30
iterations to converge at the initial frame as reported in their paper, and fewer
iterations caused serious performance degradation. This confirms that getting a
robust target model at the initial frame is very important for subsequent frames.
For CREST, performance drop was not significant as MDNet, but it was still
more than 10 iterations to reach to its maximum performance. MDNet updates
the model 15 iterations for subsequent frames at every 10 frames regularly (or
when it failed, meaning its score is below a predefined threshold).
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Table 1. Quantitative results on VOT2016 dataset. The numbers in legends represent
the number of iterations at the initial frame. EAO (expected average overlap) - 0 to
1 scale, higher is better. A (Accuracy) - 0 to 1 scale, higher is better. R (Robustness)
- 0 to N, lower is better. We ran each tracker 15 times and reported averaged scores
following VOT2016 convention.

EAO Acc R
MetaCREST-01 0.317 0.519 0.932
CREST 0.283 0.514 1.083
CREST-Base 0.249 0.502 1.383
CREST-10 0.252 0.509 1.380
CREST-05 0.262 0.510 1.298
CREST-03 0.262 0.514 1.283
CREST-01 0.259 0.505 1.277

(a) The results of MetaCREST

EAO Acc R
MetaSDNet-01 0.314 0.526 0.934
pyMDNet-30 0.304 0.540 0.943
pyMDNet-15 0.299 0.541 0.977
pyMDNet-10 0.291 0.535 0.989
pyMDNet-05 0.254 0.523 1.198
pyMDNet-03 0.184 0.488 1.703
pyMDNet-01 0.119 0.431 2.733

(b) The results of MetaSDNet

Speed and Performance of the Initialization. We reported the wall clock
time speed at the initial frame in Table 2, on a single TITAN-X GPU. In CREST,
in addition to feature extraction, there are two more computational bottle-
necks. The first is the convolution with correlation filters. Larger objects means
larger filters and more computations. We reported average time across all 100
sequences. Another heavy computation comes from PCA at the initial frame.
It also depends on the size of the objects. Larger objects lead to larger center
cropped images, features, and more computation in PCA.

MDNet requires many positive and negative patches, and also many model
update iterations to converge. A large part of the computation comes from
extracting CNN features for every patch. MetaSDNet needs only a few training
patches and can achieve 30x speedup (0.124 vs 3.508), while improving accuracy.
If we used more compact CNNs for feature extractions, the speed could have been
in the range of real-time processing. For subsequent frames in MDNet, model
update time is of less concern because MDNet only updates the last 3 fully con-
nected layers, which are relatively faster than feature extractors. The features
are extracted at every frame, stored in a database, and update the model every
10 frames. Therefore, the actual computation is well distributed across every
frames.

We also showed the performance of the initialization to see the effectiveness
of our approach (in Table 2. We measured the performance with learned initial-
ization. After initial training, we measure the performance on the first frame and
5 future frames to see generalizability of trackers. MetaSDNet achieved very high
accuracy after only one iteration, but accuracy of pyMDNet after one iteration
was barely above guessing (guessing is 50% and all negative prediction is 75%
accuracy since sampling ratio was 1:3 between positive and negative samples).
The effectiveness is more apparent in MetaCREST. MetaCREST-01 without
any updates gave already close performance to CREST-05 after training (0.48
vs 0.45). In original CREST tracker, they train the model until it reaches a loss
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Fig. 3. Precision and success plots over 100 sequences in OTB2015 dataset with one-
pass evaluation (OPE). For CREST (top row), The numbers in legends represent the
number of iterations at the initial frame, and all used 2 iterations for the subsequent
model updates. For MDNet experiments (bottom row), 01–15 means, 1 training itera-
tions at the initial frame and 15 training iterations for the subsequent model updates.

Table 2. Speed and performance of the initialization: The right table shows the losses
of estimated response map in MetaCREST. The left table shows the accuracy of image
patches in MetaSDNet. B (Before) - the performance of the initial frame before training,
A (After) - the performance of the initial frame after training, LH (Lookahead) - the
performance of next 5 frames after training, Time - wall clock time to train in seconds

B A LH Time(s)
MetaCREST-01 0.48 0.04 0.05 0.090
CREST-01 0.95 0.82 0.87 0.395
CREST-03 0.95 0.62 0.75 0.424
CREST-05 0.95 0.45 0.63 0.550
CREST-10 0.95 0.24 0.40 0.668
CREST-20 0.95 0.18 0.31 1.048
CREST-65 0.95 0.01 0.30 1.529

B A LH Time(s)
MetaSDNet-01 0.50 0.98 0.97 0.124
pyMDNet-01 0.51 0.56 0.56 0.123
pyMDNet-03 0.51 0.79 0.78 0.373
pyMDNet-05 0.51 0.84 0.84 0.656
pyMDNet-10 0.51 0.95 0.93 1.171
pyMDNet-15 0.51 0.97 0.97 1.819
pyMDNet-30 0.51 0.99 0.98 3.508

of 0.02, which corresponds to an average 65 iterations. However, its generaliz-
ability at future frames is limited compared to ours (.05 vs .30). Although this
is not directly proportional to eventual tracking performance, we believe this is
clear evidence that our meta-training algorithm based on future frames is indeed
effective, as also supported by overall tracking performance.

Visualization of Response Maps. We visualized response maps in
MetaCREST at the initial frame (Fig. 4). A meta-learned initialization, θ0 should
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Fig. 4. Visualizations of response maps in CREST: left three columns represents the
image patch at the initial frame, response map with meta-learned initial correlation
filters θ0f , response map after updating 1 iteration with learned α, respectively. The
rest of seven columns on the right shows response maps after updating the model up to
10 iterations.

Fig. 5. Qualitative examples: tracking results at early stage of MotorRolling (top) and
Bolt2 (bottom) sequences in OTB2015 dataset. Color coded boxes: ground truth (Red),
MetaCREST-01 (Green) and CREST (Blue). (Color figure online)

be capable of learning generic objectness or visual saliency. At the same time,
it should not be instance specific. It turns out that is the case. The second
column in Fig. 4 shows response maps by applying correlation filters to the
cropped image (first column) with θ0. Without any training, it already gener-
ates high response values on some locations where there are objects. But, more
importantly, there is no clear maximum. After one iteration, the maximum is
clearly located at the center of the response map. In contrast to MetaCREST,
CREST consumes more iterations to produce high response values on the target.

Qualitative Examples of Robust Initialization. In Fig. 5, we present some
examples where MetaCrest overcomes some of the issues in the original CREST.
In MotorRolling sequence (top row), CREST was distracted by a horizontal
line from the forest in the background. CREST easily reached to 0.0000 loss
defined in Eq. 6 at the initial frame, as opposed to 0.1255 in MetaCREST. This
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is a strong evidence that an optimal solution does not necessarily mean good
generalizability on future frames. In contrast, MetaCREST, generalizes well to
future frames, despite not finding an optimal solution at the current frame. In
Bolt2 sequence (bottom row), CREST also reached to 0.0000 loss (vs 0.0534 in
MetaCREST). In a similar way, a top left part in the bounding box was the
distractor. MetaCREST could easily ignore the background clutter and focused
on the object in the center of the bounding box.

6 Conclusion and Future Work

In this paper, we present an approach to use meta-learning to improve online
trackers based on deep networks. We demonstrate this by improving two state-of-
the-art trackers (CREST and MDNet). We learn to obtain a robust initial target
model based on the error signals from future frames during meta-training phase.
Experimental results show improvements in speed, accuracy, and robustness for
both trackers. The proposed technique is general so that other trackers may
benefit from it as well.

Other than target appearance modeling, which is the focus of this paper,
there are many additional important factors in object tracking algorithms. For
example, when or how often to update the model [56], how to manage the
database [6], and how to define the search space. These considerations are some-
times more important than target appearance modeling. In future work we pro-
pose including handling of these as part of learning and meta-learning.

Acknowledgments. We thank the reviewers for their valuable feedback and acknowl-
edge support from NSF 1452851, 1526367, 1446631.
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