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Abstract. Correlation filters based trackers rely on a periodic assump-
tion of the search sample to efficiently distinguish the target from the
background. This assumption however yields undesired boundary effects
and restricts aspect ratios of search samples. To handle these issues,
an end-to-end deep architecture is proposed to incorporate geometric
transformations into a correlation filters based network. This architec-
ture introduces a novel spatial alignment module, which provides contin-
uous feedback for transforming the target from the border to the center
with a normalized aspect ratio. It enables correlation filters to work on
well-aligned samples for better tracking. The whole architecture not only
learns a generic relationship between object geometric transformations
and object appearances, but also learns robust representations coupled
to correlation filters in case of various geometric transformations. This
lightweight architecture permits real-time speed. Experiments show our
tracker effectively handles boundary effects and aspect ratio variations,
achieving state-of-the-art tracking results on recent benchmarks.
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1 Introduction

Generic visual tracking aims to estimate the trajectory of a target in a video,
given only its initial location. It has been widely applied, for example to
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Fig. 1. Example videos (Gymnastic3, Fish3 and Pedestrian1 ) in VOT2015 benchmark.
General correlation filters (CF) based trackers such as DCFNet [33] and SRDCF [9]
suffer performance decline in case of aspect ratio variations. DCFNet fails in case of
fast motions because of the boundary effect.

video surveillance [1,13], and event recognition [27]. Visual tracking is chal-
lenging because the tracking scene contains complex motion patterns such as
in-plane/out-of-plane rotation, deformation, and camera motion. A tracker has
limited online samples with which to learn to adapt to these motion patterns.

The visual tracking of translating objects has been successfully tackled by
recent correlation filters (CF) based approaches [10,18]. In these approaches, a
circular window is moved over the search sample, leading to a dense and accu-
rate estimation of the object translation. This circular sliding window operation
assumes a periodic extension of the search sample, which enables efficient detec-
tion using the Fast Fourier transform, it however yields undesired boundary
effects and restricts the aspect ratio of the search sample. Therefore, in cases
of fast motions, rotations, and deformations which are common in practice, the
performance of CF based trackers often drops significantly. As shown in Fig. 1,
aspect ratio variation occurs frequently in the videos Gymnastic3 and Fish3,
and fast motion occurs frequently in the video Pedestrian1. Translation based
CF trackers often fail on these challenging scenarios.

To address the above issues, spatially regularized CF based trackers [6,7,9,11]
introduce a spatial regularization component within the CF to ensure that a CF
tracker can work on a large image region effectively and can thus handle fast
motions by reducing the boundary effect. The major disadvantage of these meth-
ods is that the regularized objective function is costly to optimize, even in the
Fourier domain. CF with limited boundaries (CFLB) [16] and background-aware
CF (BACF) [15] propose to exploit a masking matrix to allow search samples
larger than the filter. However, BACF does not have a closed-form solution,
which makes it difficult to be integrated into a deep neural network to boost
the tracking performance. Many CF based trackers [8,15,16,26,44] ignore the
aspect ratio variation, and the scale variation is handled by searching on several
scale layers or learning a scale CF. Recently, the IBCCF tracker [25] addresses
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aspect ratio variation by integrating 1D Boundary and 2D Center CFs where
boundary and center filters are enforced by a nearly orthogonal regularization
term. However, this integration has a high computation cost, which rules out
real-time applications.

In this paper, we propose a novel end-to-end learnable spatially aligned CF
based network to handle complex motion patterns of the target. A spatial align-
ment module (SAM) is incorporated into a differentiable CF based network to
provide spatial alignment capabilities and reduce the CF’s search space of the
object motion. To be specific, conditioned on the consecutive frame regions (for-
mer target region and latter search region), SAM performs translation, aspect
ratio variation and cropping on the search frame. This allows the network not
only to select a region of an image that is most relevant to the target, but
also to transform this region to a canonical pose to simplify the localization
and recognition in the following CF layer. Once the CF layer obtains the trans-
formed image from the SAM, it generates a Gaussian response map reflecting
the object’s position, scale and aspect ratio. Therefore, to generate this kind of
the Gaussian response, our feature learning coupled to the CF layer is restricted
to be positively adaptive to object geometric variations, which further boosts the
capability of our network to handle complex object motion patterns. It should
be noted that both the SAM and the CF layer can be trained with the standard
back-propagation algorithm, allowing for end-to-end training of the whole track-
ing network on the ILSVRC2015 [12] dataset. After the whole network training
on ILSVRC2015, both the SAM and the cascade CF tracking are learned in
a data driven manner to be robust to general transformations existed in the
training sample pairs.

In the online tracking process, the weights from the feature extraction lay-
ers and the SAM are frozen, while the coefficients of the CF layer are updated
continuously to learn video-specific tracking cues. The SAM brings our tracker’s
attention to the target area according to its knowledge of various motion patterns
learnt off-line and guides our CF to estimate the object motion more adaptively
and accurately. Moreover, the light-weight network architecture and the fast cal-
culation of the CF layer allow efficient tracking at a real-time speed. We conduct
experiments on large benchmarks [22,41,42], and the results demonstrate that
our algorithm performs competitively against state-of-the-art methods.

To sum up, the contributions of this work are three folds:

– We introduce a differentiable SAM in CF based tracking to address the chal-
lenging issues including boundary effects and aspect ratio variations in the
previous CF based trackers, enabling better learnability for complex object
motion patterns.

– We propose to learn discriminative convolutional features coupled to the spa-
tially aligned CF to generate a Gaussian response map reflecting object’s
position, scale and aspect ratio, which allows accurate object localization.

– The proposed deep architecture for spatially aligned CF tracking is trained
off-line from end to end. The spatial alignment and the CF based localization
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are conducted in a mutual reinforced way, which ensures an accurate motion
estimation inferred from the consistently optimized network. Our network
also permits real-time tracking.

2 Related Work

Correlation Filter Based Trackers. The CF based trackers [8,26] are very
popular due to their promising performance and computational efficiency. Since
Bolme et al. [3] introduced the CF into the visual tracking field, several exten-
sions have been proposed to improve the tracking performance. The examples
include kernelized correlation filters [18,36], multiple dimensional features [10],
context learning [15,28], scale estimation [8,26], re-detection [30], short-term
and long-term memory [20], spatial regularization [9] and deep learning based
CFs [6,29,32,38]. In this paper, we demonstrate that feature extraction, spatial
alignment, CF based appearance modeling can be integrated into one network
for end-to-end prediction and optimization, so that motion patterns of the object
such as fast motions and aspect ratio variations are handled well by the CF based
trackers.

Deep Learning Based Trackers. Recent works based on online deep learn-
ing trackers have shown high performance [31,35,40]. Despite the high perfor-
mances, these trackers require frequent fine-tuning to adapt to object appearance
changes. This fine-tuning is slow and prohibits real-time tracking. Furthermore,
Siamese networks have received growing attention due to its two stream identical
structure. These include tracking by object verification [37], tracking by corre-
lation [2] and tracking by location axis prediction [17]. Although our spatial
alignment module has a similar network architecture as [17], it permits back-
propagation and is learnt with the CF in a mutual reinforced way. It provides
the CF with an approximately aligned target to simplify the localization and
recognition conducted in the CF layer. The CF layer is updated online to refine
the alignment provided by the spatial alignment module for tracking accuracy.
Moreover, to avoid over-fitting the network to tracking datasets, we train our
network on ILSVRC2015 dataset instead of the ALOV300++ dataset.

Spatial Transformer Network. The spatial transformer network (STN) [21]
has demonstrated excellent performances in selecting regions of interests auto-
matically. It is used in face detection [4] to map the detected facial landmarks
to their canonical positions to better normalize the face patterns. Dominant
human proposals are extracted by STN in regional multi-person pose estimation
[14]. For the first time, we introduce an STN into visual tracking. In order to
well fit the characteristic of visual tracking, we modify a general STN from a
single-input module to a two-stream module. Therefore, our two-stream module
is called a spatial alignment module, which transforms the target object more
purposefully for visual tracking.



488 M. Zhang et al.

Target patch z

C
O
N
V

C
O
N
V

Localiza on network

Grid generator

Search candidate x

Sampler

C
O
N
V

C
O
N
V

Spa al alignment module

Filter learning          

Tracking

Feature 
extractor

Correla on filter layer 
(e.g. discrete or 
con nuous CFs)

Online learner module 
(e.g. Correla on filter 
module)

Fig. 2. Pipeline of our algorithm. Note that the red bounding box in the search patch
x represents the initial candidate target position and the yellow one represents the
aligned position provided by our SAM. Our SAM is generic and the CF module can
be replaced by other online tracking learners. (Color figure online)

3 Spatially Aligned Correlation Filters Network

3.1 Overview

The architecture of the proposed spatially aligned CF based network (SACFNet)
is shown in Fig. 2 to handle complex motion patterns of the target. It contains
two components: a novel spatial alignment module (SAM) and a correlation filter
(CF) module. The SAM contains a localization network, a grid generator and a
sampler. The CF module contains a feature extractor and a CF based appearance
modeling and tracking layer. The SAM brings the target into a CF’s attention
in the form of a canonical pose (centralized with the fixed scale and aspect
ratio). Since this module is differentiable, the spatial alignment and CF based
localization are optimized in a mutual reinforced way, which ensures accurate
motion estimations inferred from the consistently optimized network.

Denote a training sample as x which contains a target object drifting away
from the center of this sample with different scale and aspect ratio from the
canonical one. Let τ� be the expected transformation according to which the
target object in x can be transformed to the center with the canonical scale and
aspect ratio. In this paper, we just consider the object translations, scale and
aspect ratio variations. Thus, τ� has four parameters including translations and
scales along the horizontal and vertical axes, denoted τ� = {dx, dy, dsx, dsy}.
y(τ�) is a canonical Gaussian correlation response based on the expected trans-
formation τ�. {ϕl(·)}D

l=1 denotes the D-dimensional representations obtained
from the feature extractor coupled to the CF layer. The multi-channel CF is
denoted as {wl}D

l=1. Then, learning an SACFNet in the spatial domain is for-
mulated by minimizing the objective function:

ε(θ1, θ2) =
1
2
‖

D∑

l=1

wl
θ2

� ϕl
θ2

(x(τθ1)) − y(τ�)‖22 + λ

D∑

l=1

‖wl
θ2

‖22,

s.t. x(τθ1) = x ◦ τθ1 ,y(τ�) = y ◦ τ�,

(1)
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where � denotes a circular correlation operator, ◦ denotes that the image is
transformed according to the transformation parameters via the grid generator
and the sampler as in STN [21] and the constant λ ≥ 0 is the weight of the
regularization term. Note that y is the Gaussian correlation response whose
mean, variance and magnitude are related to the object position, scale and aspect
ratio in the sample x. We learn parameters of the SAM denoted as θ1 to generate
an estimate of the object transformation denoted as τθ1 . This estimate τθ1 is
expected to be equal to the true transformation τ�. At the same time, we learn
parameters of the feature extractor θ2 to generate {ϕl(·)}D

l=1 and {wl}D
l=1.

We find that it is difficult to directly learn these two twisted parameters in
Eq. (1). Traditional image alignment algorithms such as [34,43] usually learn
parameters of image transformations and object appearance models using the
iterative optimization strategy. Therefore, in the training stage of out network,
for a easy convergence, we divide the off-line training process of SACFNet into
three steps: (1) pre-training the SAM, (2) boosting the feature learning in the
CF module based on the pre-trained SAM, and (3) end-to-end fine-tuning for
a global optimization. In the tracking stage, object localization is carried out
directly with one pass based on our pre-learnt deep neural network. No network
fine-tuning is carried out in the tracking stage. More details will be shown in the
following three subsections.

3.2 Spatial Alignment Module

Because the parameters are twisted together in the optimization problem in
Eq. (1), it is straightforward to first fix the feature extractor θ2 and learn the
SAM based on the subproblem:

ε1(θ1) =
1
2
‖

D∑

l=1

wl � ϕl(x(τθ1)) − y(τ�)‖22,

s.t. x(τθ1) = x ◦ τθ1 ,y(τ�) = y ◦ τ�.

(2)

Because in the beginning of the training process of the SACFNet, parameters
in the feature extractor θ2 are randomly initialized. Thus, the corresponding
correlation filter {wl}D

l=1 has a poor tracking performance. It can not provide a
reliable supervision to the SAM, which affects the quality of the learning process
of this module. Meanwhile, since 3D object movements such as deformations and
out-of-plane rotations usually occur in visual tracking, learning 2D transforma-
tions based on the image matching loss as in Eq. (3) has limitations to handle
3D movements and has a large modeling error:

ε1(θ1) = ‖x(τθ1) − x(τ�)‖2. (3)

Therefore, our SAM focuses on regressing the target bounding boxes to integrally
contain the target instead of a detailed image matching:

ε1(θ1) = ‖τθ1 − τ�‖1. (4)
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2D affine transform is sufficient to model the target global transform and this
loss is also exploited in GOTURN [17]. Compared to the particle filtering based
tracking methods [24,31] which generate transformed sample candidates based
on the random sampling on a Gaussian distribution, our SAM learns to directly
estimate the correct transform and generate a sample containing the centralized
object with the proper scale and aspect ratio.

Network Architecture. We exploit a two-stream (Siamese) architecture for
the localization network of the SAM to estimate the target transformation. The
target patch in the preceding frame t−1 and the search patch in the consecutive
frame t are fed into this module as inputs. In this way, the object in the search
patch is not only brought into attention, but also aligned with the object in the
target patch, which is more favorable for visual tracking. Each stream contains
the first five convolutional layers of the CaffeNet [23]. Features from two streams
are then combined and fed into following three fully connected layers, which
finally output the transformation parameters. Specifically, the number of feature
channels in each fully connected layer is set to 4096 and the number of the
transformation parameters is set to 4. The predicted transformation parameters
are used to create a sampling grid to select a target region from the whole image,
namely the grid generator and sampler in STN [21]. In this stage, the selected
target region is not exploited for the optimization in Eq. (4).

3.3 Feature Learning for Correlation Filters

After the first stage training of the SAM, we freeze this module and carry out
feature learning coupled to the CF layer:

ε2(θ2) =
1
2
‖

D∑

l=1

wl
θ2

� ϕl
θ2

(x(τθ�
1
))− y(τθ�

1
)‖22 + λ

D∑

l=1

‖wl
θ2

‖22,

s.t. x(τθ�
1
) = x ◦ τθ�

1
,y(τθ�

1
) = y ◦ τθ�

1
,

(5)

where the transformation τθ�
1

is estimated by the pre-trained SAM. Notably,
y(τθ�

1
) is a Gaussian response in the joint scale-displacement space corresponding

to the augmented sample x(τθ�
1
). Compared to the canonical Gaussian response

y(τ�), its center μ(τθ�
1
), variance Σ(τθ�

1
) and magnitude changes according to

the Euclidean distance between the object state (position, scale and aspect
ratio) in x(τθ�

1
) and the object state in the canonical image patch. The object

in the canonical image patch is centralized with the fixed scale and aspect ratio.
Therefore, compared to a general CFNet [33,38] whose training samples contain
objects with a canonical pose and the Gaussian response is unique, our CF based
appearance modeling considers object motion variations and is context-aware.

Network Architecture. Similar to [33], our CF module consists two branches:
a filter learning branch and a tracking branch. Both branches exploit the same
feature extractor which contains two convolutional layers with kernels whose
sizes are 3 × 3 × 3 × 96 and 3 × 3 × 96 × 32. Specifically, a target patch z is fed
into the filter learning branch to learn the parameters in the CF layer:
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ŵl
θ2

=
ŷ∗ � ϕ̂l

θ2
(z)

∑D
k=1 ϕ̂k

θ2
(z) � (ϕ̂k

θ2
(z))∗ + λ

, (6)

where ŷ denotes the discrete Fourier transform of y, i.e., F(y), y∗ represents the
complex conjugate of y, and � denotes the Hadamard product. Note that for
CF based appearance modeling, the object in the target patch z is centralized
with the fixed scale and aspect ratio. Thus, its corresponding response y has
a canonical form. The other tracking branch works on a search patch selected
by the SAM from the whole image. The correlation response between the learnt
CF in Eq. (6) and this search patch is calculated in the CF layer. Then, the
CF module is trained by minimizing the difference between this real correlation
response gθ2(x(τθ�

1
)) and the expected Gaussian-shaped response y(τθ�

1
):

ε2(θ2) = ‖gθ2(x(τθ�
1
)) − y(τθ�

1
)‖22 + γ‖θ2‖22, (7)

gθ2(x(τθ�
1
)) = F−1(

D∑

l=1

ŵl∗
θ2

� ϕ̂l
θ2

(
x(τθ�

1
)
)
), (8)

where the constant γ ≥ 0 is the relative weight of the regularization term.
Therefore, effective feature learning is achieved by training the CF module under
the guidance of the SAM.

The training process of the CF module is explained as follows. For expla-
nation clarity, we omit the subscript θ2 in the following equations. Since the
operations in the forward pass only contain Hadamard product and division, we
can calculate the derivative per-element:

∂ε2
∂ĝ∗

uv(x(τθ�
1
))

=
(

F
(

∂ε2
∂g(x(τθ�

1
))

))

uv

. (9)

For the back-propagation of the tracking branch,

∂ε2
∂(ϕ̂l

uv(x(τθ�
1
)))∗ =

∂ε2
∂ĝ∗

uv(x(τθ�
1
))

(ŵl
uv), (10)

∂ε2
∂ϕl(x(τθ�

1
))

= F−1

(
∂ε2

∂(ϕ̂l(x(τθ�
1
)))∗

)
. (11)

For the back-propagation of the filter learning branch, we treat ϕ̂l
uv(z) and

(ϕ̂l
uv(z))∗ as independent variables.

∂ε2
∂ϕ̂l

uv(z)
=

∂ε2
∂ĝ∗

uv(x(τθ�
1
))

Γ1, (12)

Γ1 =
(ϕ̂l

uv(x(τθ�
1
)))∗ŷ∗

uv(τθ�
1
) − ĝ∗

uv(x(τθ�
1
))(ϕ̂l

uv(z))∗
∑D

k=1 ϕ̂k
uv(z)(ϕ̂k

uv(z))∗ + λ
, (13)

∂ε2
∂(ϕ̂l

uv(z))∗ =
∂ε2

∂ĝ∗
uv(x(τθ�

1
))

Γ2, (14)
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Γ2 =
−ĝ∗

uv(x(τθ�
1
))ϕ̂l

uv(z)
∑D

k=1 ϕ̂k
uv(z)(ϕ̂k

uv(z))∗ + λ
, (15)

∂ε2
∂ϕl(z)

= F−1

(
∂ε2

∂(ϕ̂l(z))∗ +
(

∂ε2
∂ϕ̂l(z)

)∗)
. (16)

3.4 Model Training and Online Tracking

Model Training. We design a three-step procedure to train the proposed deep
architecture for visual tracking: (1) pre-training the SAM (Sect. 3.2), (2) pre-
training the CF module based on the pre-trained SAM (Sect. 3.3), and (3) fine-
tuning the whole network to make the spatial alignment and the CF based
localization optimized in a mutual reinforced way:

ε(θ1, θ2) =
1

2
‖

D∑

l=1

wl
θ2 � ϕl

θ2(x(τθ1)) − y(τ�)‖2
2 + λ

D∑

l=1

‖wl
θ2‖2

2 + ‖τθ1 − τ�‖1,

s.t. x(τθ1) = x ◦ τθ1 ,y(τ�) = y ◦ τ�,

(17)

We maintain the loss from Eq. (4) for a better convergence as many STN based
methods have done [4]. All the training stages are carried out on the ILSVRC2015
dataset, because it contains different scenes and objects from the canonical track-
ing benchmarks. A deep model can be safely trained on it without the risk of
over-fitting to the domain of tracking videos. Pairs of search and target patches
are extracted from this video dataset. Specifically, a target patch is generated
for each frame by cropping an image region from an object bounding box. For
each search patch, we randomly sample a set of source patches from the con-
secutive frame. The source patches are generated by randomly perturbing the
bounding box to mimic motion changes (e.g., translations, scale and aspect ratio
variations) between frames. We follow the practice in GOTURN, assuming that
the motion between frames follows a Laplace distribution.

Online Tracking. In the online tracking process, the feature extractor and the
SAM are frozen. The CF layer is updated following the common practice in CF
based trackers:

ŵl
t = (1 − α) · ŵl

t−1 + α · ŵl, (18)

where α = 0.01 is the update rate. The computation cost of this online adapta-
tion strategy is cheap compared to online network fine-tuning, and it is effective
for a CF to adapt to object appearance changes quickly. When a new frame
comes, we extract a search patch from the center location predicted in the pre-
vious frame. The SAM works on this patch and the target patch from the pre-
vious frame, and provides an initial estimation of object translation, scale and
aspect ratio. The grid generator and sampler extract an aligned image patch in
this new frame. For a more accurate scale estimation, based on this aligned
image patch, we extract another two image patches using the scale factors



SACFNet Tracker 493

{as|a = 1.0275, s = {−1, 1}} similarly to [33] for fine-grained alignment. These
image patches are fed into the CF module for object localization. The final target
scale is estimated based on the scale factors and the transformation parameters
from the SAM.

Issue of General Object Movements. SAM is motivated to solve issues
of the fixed target aspect ratio and the boundary effect in CF based appear-
ance modeling and tracking. As the learning of general transformations such
as deformations and out-of-plane rotations is very difficult even with accurate
sample annotations, it is thus infeasible in the tracking problem to learn all
these transformations in a single model without sample annotations. Neverthe-
less, our algorithm can well handle general transformations: (1) SAM focuses on
regressing the target bounding boxes to integrally contain the target instead of
a detailed target matching as explained in Sect. 3.2. SAM is trained in a data
driven manner to be robust to deformations and out-of-plane rotations existed
in the training sample pairs; and (2) the following processing step of cascade CF
tracking is also very robust to these transformations owning to its data driven
learning. As the objective of visual tracking is to estimate the target bounding
boxes, we find our current design of SAM is effective and provide more accurate
object locations than its counterparts.

4 Experiments

4.1 Experimental Setups

Implementation Details. Because our SAM is generic, apart from the canon-
ical CF formulation, it is straightforward to introduce SAM into other online
learners. Thus, in our experiments, we provide two versions of our SACFNet:
(1) SACF(D) exploits a canonical discrete CF module as explained in Sect. 3.3;
(2) SACF(C) exploits a continuous CF module which is same as ECO1. In the
pre-training process of the SAM, we extract a target patch of 22 times the size of
the target bounding box and then resize it to 227 × 227. The parameters of the
convolutional layers are frozen and taken from the CaffeNet. We train three fully
connected layers where the learning rate is 1e−5, and the batch size is 50. In the
pre-training process of the CF module, following the canonical CF setting, the
padding size is 2 and the input size of the feature extractor is 125 × 125. The
regularization weight λ is set to 1e−4 and the Gaussian spatial bandwidth is
set to 0.1. We train this CF module with a learning rate exponentially decaying
from 1e−4 to 1e−5 and a batch size of 32. In the end-to-end training process,
the two modules are learnt in a mutual reinforce manner with a learning rate of
1e−5 and a batch size of 32. Our experiments are performed with the MatCon-
vNet toolbox [39] on a PC with an i7 3.4 GHz CPU and a GeForce GTX Titan
Black GPU. The mean speed of SACF(D) on OTB2015 dataset is 23 frames per
second.
1 https://github.com/martin-danelljan/ECO.

https://github.com/martin-danelljan/ECO
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Benchmark Datasets and Evaluation Metrics. OTB [41,42] is a stan-
dard benchmark which contains 100 fully annotated targets with 11 different
attributes. We follow the protocol of OTB and report results based on success
plots and precision plots. The success plots show the percentage of frames in
which the overlap score exceeds a threshold. In these plots, the trackers are
ranked using the area under the curve (AUC) displayed in the legend. The pre-
cision plots show the percentage of frames where the center location error is
below a threshold. A threshold of 20 pixels is exploited to rank trackers. The
VOT dataset [22] comprises 60 videos showing various objects in challenging
backgrounds. Trackers are evaluated in terms of accuracy and robustness. The
accuracy score is based on the overlap with ground truth, while the robustness
is determined by the failure rate. We use the expected average overlap (EAO)
measure to analyze the overall tracking performance.

4.2 Ablation Studies

Our SACF(D) is learnt off-line in three steps as discussed in Sect. 3.4. In this
section, we conduct ablation analysis on three datasets to validate the effective-
ness of the proposed training steps, as shown in Table 1.

First, our SAM learned in the first training step is compared with GOTURN
to show the effect of the training dataset and the tracking performance. SAM
has a lower tracking performance than GOTURN on VOT2015 and OTB2013,
because the annotations of bounding boxes in ILSVRC2015 are quite looser
than ALOV300++ which is the training dataset of GOTURN, and there are
video overlaps between ALOV300++ and VOT2015/OTB2013/OTB2015. The
loose annotations make SAM tend to contain the whole object as shown in the
video Gymnastic3 in Fig. 1, and provide a coarse prediction which requires fur-
ther precise localization from the CF module. Both SAM and GOTURN suffer
easy tracking drifts because of the error accumulation and perform poorly on
OTB2015 dataset which has a lower overlap ratio of videos with ALOV300++.
Therefore, it is very difficult to precisely learn complex geometric transforma-
tions under a single supervision of the regression loss in Eq. (4).

Second, to verify the superiority of the training strategy in the second step,
our CF module which is trained in the second step under the guidance of the SAM
(denoted by CF-Aug) is compared with its baseline namely DCFNet tracker.
Specifically, CF-Aug and DCFNet have the same tracking process and differ in
the training strategy. In the training stage, the input search patch of CF-Aug
outputted by SAM contains a target drifting from the center with the aspect
ratio variation. It is expected to generate a Gaussian response whose center,
variance, and magnitude vary correspondingly. Contrastively, DCFNet works
on a canonical search patch and generates a canonical response. As shown in
Table 1, with data augmentation and the appearance modeling related to object
scale and aspect ratio variations, our learnt CF-Aug performs favorably against
DCFNet. Third, the integration of the SAM and the CF-Aug learned from the
second training step is named SACF(D)-iter1. In the tracking process, this tracker
exploits the SAM to first coarsely localize the target to reduce a CF’s search
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Table 1. An illustration of the effectiveness of each training stage on VOT2015,
OTB2013, and OTB2015. Red, blue and green fonts indicate the 1st, 2nd, and 3rd
performance respectively.

Stage Tracker VOT2015 A VOT2015 R VOT2015 EAO OTB2013 AUC OTB2015 AUC

1 GOTURN [17] 0.48 2.02 0.203 0.457 0.115

SAM 0.43 3.24 0.158 0.297 0.132

2 DCFNet [33] 0.53 1.68 0.217 0.622 0.580

CF-Aug 0.55 1.67 0.225 0.628 0.600

SAM-DCFNet 0.52 1.19 0.280 0.639 0.610

SACF(D)-iter1 0.52 1.16 0.287 0.648 0.612

3 SACF(D) 0.51 1.00 0.324 0.664 0.633

- ECO [6] 0.57 1.29 0.326 0.709 0.688

- SACF(C) 0.57 1.07 0.343 0.713 0.693

space and then achieves the fine-grained localization based on a CF. The direct
combination of SAM and DCFNet is named SAM-DCFNet. Because CF-aug is
learnt coupled to SAM, SACF(D)-iter1 shows a better performance.

Moreover, the effectiveness of the end-to-end fine-tuning is evaluated by com-
paring the fine-tuned SACF(D) in the third training step and SACF(D)-iter1.
SACF(D) outperforms SACF(D)-iter1 on all three benchmark datasets because
the SAM and the CF module are learnt in a reinforced way. Conclusively, SAM
estimates the global transform of a target in two consecutive frames and thus
provides a coarse target localization. Only based on coarse estimations, back-
ground noise is gradually introduced into the target template leading to tracking
drifts. CFs work well in local fine-grained search spaces of translations and scales,
but cannot well handle aspect ratio variations and large motions, suffering track-
ing misalignment and drifts. By combining two complementary components, the
target template exploited by SAM is more precise and the search space of CFs
can be narrowed to local refinement. SACF(D) is superior to SAM and CF-Aug
on three datasets. SACF(C) also outperforms baseline ECO as shown in Table 1
and Fig. 5. Note that because object annotations in VOT benchmarks change
aspect ratios more frequently than in the OTB benchmarks, SACF(C) obtains
more significant improvements in VOT benchmarks. The results also prove the
generalization capability of our SAM. Especially, according to the robustness
measure in VOT2015, the incorporation of a SAM does not degrade the robust-
ness of SACF(D) and SACF(C).

4.3 Comparisons with the State-of-the-Arts

OTB Dataset. We compare our two versions of SACFNet (SACF(D) and
SACF(C)) against recent state-of-the-art trackers including BACF [15], ECO [6],
SINT flow [37], STAPLE CA (CACF) [28], CFNet [38], ACFN [5], IBCCF [25],
SiamFC 3s [2], SAMF [26], SRDCF [9], and CNN-SVM [19]. Figure 3 illustrates
precision and success plots on OTB2013 and OTB2015.
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Fig. 3. Success plots and precision plots showing a comparison with recent state-of-
the-art methods on OTB2013 and OTB2015.
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Fig. 4. Attribute-based analysis on the OTB2015 dataset.

From Fig. 3 we can draw three conclusions. First, SACF(D) outperforms
most CF based trackers with a scale estimation (e.g., SiamFC 3s and SAMF).
SACF(D) is superior to IBCCF (AUC scores of 0.660 and 0.630 on OTB2013
and OTB2015) which considers the aspect ratio variation issue, and is more effi-
cient than IBCCF. SACF(D) significantly outperforms ACFN, although ACFN
introduces an attentional CF network to handle the target drift, blurriness, occlu-
sion, scale changes, and flexible aspect ratio. SACF(C) also outperforms ECO
benefiting from the consideration of object aspect ratio variations. Conclusively,
SACFNet provides an effective and efficient way to tackle issues of the object
scale and aspect ratio variations.

Second, SACF(D) provides a competitive tracking performance against BACF
and SRDCF which solve the boundary effect problem. In contrast to SINT flow
where the Siamese tracking network and the optical flow method are isolated to
each other, our SAM and CF module cooperate with each other and are learnt
in a mutual reinforced way. Conclusively, compared to recent CF based trackers
designed for handling boundary effects and Siamese network based trackers con-
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Fig. 5. EAO ranking with trackers in VOT2015 (left) and VOT2016 (right).

sidering object motions, SACF(D) provides a new strategy to benefit from the
motion information while reducing boundary effects.

Third, SACF(D) outperforms traditional CFs based trackers (e.g., CFNet,
STAPLE CA and HDT) and Siamese network based trackers (e.g., SINT flow,
SiamFC 3s) on both datasets. Our feature learning coupled to the CF layer and
the guidance of the SAM enhance the performance of a CF based tracker. More-
over, benefited from the integration of a CF layer, compared to other Siamese
networks, our SACF(D) can online update the object appearance modeling effi-
ciently without fine-tuning the network.

Attribute Based Analysis Related to Object Complex Motions.
SACF(D) is evaluated on attributes to show its capability of tackling issues of
aspect ratio variation and boundary effects on OTB2015 dataset, as shown in
Fig. 4. Specifically, in cases of scale variation, deformation, and in-plane/out-of-
plane rotation, the target scale and aspect ratio changes. In cases of fast motion
and out-of-view, the boundary effects degrades tracking performance easily. We
copy the AUC scores of IBCCF from its paper (scale variation: 0.610, occlusion:
0.600, out-of-plane rotation: 0.597, in-plane rotation: 0.589). SACF(D) is superior
to IBCCF in all these cases related to the aspect ratio variation. SACF(D) outper-
forms its baseline tracker CFNet by large margins in cases of all the attributes.
Our SAM learns useful motion patterns from the external dataset and simplify
the localization and recognition in the following CF module.

VOT Dataset. We show the comparative results on VOT dataset in Fig. 5.
SACF(D) and SACF(C) significantly exceed the VOT2015 published sota bound
(grey line) and outperforms C-COT [11], DeepSRDCF [7] and EBT [45].
SACF(C) ranks first in VOT2016 dataset and outperforms ECO. The experi-
mental results show the effectiveness of feature learning and the SAM.

5 Conclusion

We propose a novel visual tracking network that tackles the issues of bound-
ary effects and aspect ratio variations in CF based trackers. The proposed deep
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architecture enables feature learning, spatial alignment and CF based appear-
ance modeling to be carried out simultaneously from end-to-end. Therefore, the
spatial alignment and CF based localization are conducted in a mutual reinforced
way, which ensures an accurate motion estimation inferred from the consistently
optimized network.
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