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Abstract. The state of the art in video understanding suffers from
two problems: (1) The major part of reasoning is performed locally
in the video, therefore, it misses important relationships within actions
that span several seconds. (2) While there are local methods with fast
per-frame processing, the processing of the whole video is not efficient
and hampers fast video retrieval or online classification of long-term
activities. In this paper, we introduce a network architecture (https://
github.com/mzolfaghari/ECO-efficient-video-understanding) that takes
long-term content into account and enables fast per-video processing at
the same time. The architecture is based on merging long-term content
already in the network rather than in a post-hoc fusion. Together with
a sampling strategy, which exploits that neighboring frames are largely
redundant, this yields high-quality action classification and video cap-
tioning at up to 230 videos per second, where each video can consist of
a few hundred frames. The approach achieves competitive performance
across all datasets while being 10× to 80× faster than state-of-the-art
methods.

Keywords: Online video understanding · Real-time
Action recognition · Video captioning

1 Introduction

Video understanding and, specifically, action classification have benefited a lot
from deep learning and the larger datasets that have been created in recent years.
The new datasets, such as Kinetics [20], ActivityNet [13], and SomethingSome-
thing [10] have contributed more diversity and realism to the field. Deep learning
provides powerful classifiers at interactive frame rates, enabling applications like
real-time action detection [30].

While action detection, which quickly decides on the present action within
a short time window, is fast enough to run in real-time, activity understanding,
which is concerned with longer-term activities that can span several seconds,
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requires the integration of the long-term context to achieve full accuracy. Sev-
eral 3D CNN architectures have been proposed to capture temporal relations
between frames, but they are computationally expensive and, thus, can cover
only comparatively small windows rather than the entire video. Existing meth-
ods typically use some post-hoc integration of window-based scores, which is
suboptimal for exploiting the temporal relationships between the windows.

In this paper, we introduce a straightforward, end-to-end trainable archi-
tecture that exploits two important principles to avoid the above-mentioned
dilemma. Firstly, a good initial classification of an action can already be obtained
from just a single frame. The temporal neighborhood of this frame comprises
mostly redundant information and is almost useless for improving the belief
about the present action1. Therefore, we process only a single frame of a tem-
poral neighborhood efficiently with a 2D convolutional architecture in order to
capture appearance features of such frame. Secondly, to capture the contextual
relationships between distant frames, a simple aggregation of scores is insuffi-
cient. Therefore, we feed the feature representations of distant frames into a
3D network that learns the temporal context between these frames and so can
improve significantly over the belief obtained from a single frame – especially
for complex long-term activities. This principle is much related to the so-called
early or late fusion used for combining the RGB stream and the optical flow
stream in two-stream architectures [8]. However, this principle has been mostly
ignored so far for aggregation over time and is not part of the state-of-the-art
approaches.

Consequent implementation of these two principles together leads to a high
classification accuracy without bells and whistles. The long temporal context of
complex actions can be fully captured, whereas the fact that the method only
looks at a very small fraction of all frames in the video leads to extremely fast
processing of entire videos. This is very beneficial especially in video retrieval
applications.

Additionally, this approach opens the possibility for online video understand-
ing. In this paper, we also present a way to use our architecture in an online
setting, where we provide a fast first guess on the action and refine it using the
longer term context as a more complex activity establishes. In contrast to online
action detection, which has been enabled recently [30], the approach provides
not only fast reaction times, but also takes the longer term context into account.

We conducted experiments on various video understanding problems includ-
ing action recognition and video captioning. Although we just use RGB images
as input, we obtain on-par or favorable performance compared to state-of-the-art
approaches on most datasets. The runtime-accuracy trade-off is superior on all
datasets.

1 An exception is the use of two frames for capturing motion, which could be achieved
by optionally feeding optical flow together with the RGB image. In this paper, we
only provide RGB images, but an extension with optical flow, e.g., a fast variant of
FlowNet [16] would be straightforward.
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2 Related Work

Video Classification with Deep Learning. Most recent works on video clas-
sification are based on deep learning [6,19,29,34,48]. To explore the temporal
context of a video, 3D convolutional networks are on obvious option. Tran et
al. [33] introduced a 3D architecture with 3D kernels to learn spatio-temporal
features from a sequence of frames. In a later work, they studied the use of a
Resnet architecture with 3D convolutions and showed the improvements over
their earlier c3d architecture [34]. An alternative way to model the temporal
relation between frames is by using recurrent networks [6,24,25]. Donahue et
al. [6] employed a LSTM to integrate features from a CNN over time. How-
ever, the performance of recurrent networks on action recognition currently lags
behind that of recent CNN-based methods, which may indicate that they do not
sufficiently model long-term dynamics [24,25]. Recently, several works utilized
3D architectures for action recognition [5,35,39,48]. These approaches model
the short-term temporal context of the input video based on a sliding window.
At inference time, these methods must compute the average score over multiple
windows, which is quite time consuming. For example, ARTNet [39] requires on
average 250 samples to classify one video.

All these approaches do not sufficiently use the comprehensive information
from the entire video during training and inference. Partial observation not only
causes confusion in action prediction, but also requires an extra post-processing
step to fuse scores. Extra feature/score aggregation reduces the speed of video
processing and disables the method to work in a real-time setting.

Long-Term Representation Learning. To cope with the problem of partial
observation, some methods increased the temporal resolution of the sliding win-
dow [4,36]. However, expanding the temporal length of the input has two major
drawbacks. (1) It is computationally expensive, and (2) still fails to cover the
visual information of the entire video, especially for longer videos.

Some works proposed encoding methods [26,28,42] to learn a video repre-
sentation from samples. In these approaches, features are usually calculated for
each frame independently and are aggregated across time to make a video-level
representation. This ignores the relationship between the frames.

To capture long-term information, recent works [2,3,7,40] employed a sparse
and global temporal sampling method to choose frames from the entire video
during training. In the TSN model [40], as in the aggregation methods above,
frames are processed independently at inference time and their scores are aggre-
gated only in the end. Consequently, the performance in their experiments stays
the same when they change the number of samples, which indicates that their
model does not really benefit from the long-range temporal information.

Our work is different from these previous approaches in three main aspects:
(1) Similar to TSN, we sample a fixed number of frames from the entire video
to cover long-range temporal structure for understanding of video. In this way,
the sampled frames span the entire video independent of the length of the video.
(2) In contrast to TSN, we use a 3D-network to learn the relationship between
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the frames throughout the video. The network is trained end-to-end to learn
this relationship. (3) The network directly provides video-level scores without
post-hoc feature aggregation. Therefore, it can be run in online mode and in
real-time even on small computing devices.

Video Captioning. Video captioning is a widely studied problem in computer
vision [9,14,43,45]. Most approaches use a CNN pre-trained on image classifi-
cation or action recognition to generate features [9,43,45]. These methods, like
the video understanding methods described above, utilize a frame-based feature
aggregation (e.g. Resnet or TSN) or a sliding window over the whole video (e.g.
C3D) to generate video-level features. The features are then passed to a recur-
rent neural network (e.g. LSTM) to generate the video captions via a learned
language model. The extracted visual features should represent both the tempo-
ral structure of the video and the static semantics of the scene. However, most
approaches suffer from the problem that the temporal context is not properly
extracted. With the network model in this work, we address this problem, and
can consequently improve video captioning results.

Real-Time and Online Video Understanding. Deep learning accelerated
image classification, but video classification remains challenging in terms of
speed. A few works dealt with real-time video understanding [18,30,31,44]. EMV
[44] introduced an approach for fast calculation of motion vectors. Despite this
improvement, video processing is still slow. Kantorov [18] introduced a fast dense
trajectory method. The other works used frame-based hand-crafted features for
online action recognition [15,22]. Both accuracy and speed of feature extrac-
tion in these methods are far from that of deep learning methods. Soomro et
al. [31] proposed an online action localization approach. Their model utilizes
an expensive segmentation method which, therefore, cannot work in real-time.
More recently, Singh et al. [30] proposed an online detection approach based
on frame-level detections at 40 fps. We compare to the last two approaches in
Sect. 5.

3 Long-Term Spatio-Temporal Architecture

The network architecture is shown in Fig. 1. A whole video with a variable num-
ber of frames is provided as input to the network. The video is split into N sub-
sections Si, i = 1, ..., N of equal size, and in each subsection, exactly one frame
is sampled randomly. Each of these frames is processed by a single 2D convolu-
tional network (weight sharing), which yields a feature representation encoding
the frame’s appearance. By jointly processing frames from time segments that
cover the whole video, we make sure that we capture the most relevant parts of
an action over time and the relationship among these parts.

Randomly sampling the position of the frame is advantageous over always
using the same position, because it leads to more diversity during training and
makes the network adapt to variations in the instantiation of an action. Note
that this kind of processing exploits all frames of the video during training to
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Fig. 1. Architecture overview of ECO Lite. Each video is split into N subsections of
equal size. From each subsection a single frame is randomly sampled. The samples are
processed by a regular 2D convolutional network to yield a representation for each
sampled frame. These representations are stacked and fed into a 3D convolutional
network, which classifies the action, taking into account the temporal relationship.

Fig. 2. (A) ECO Lite architecture as shown in more detail in Fig. 1. (B) Full ECO
architecture with a parallel 2D and 3D stream.

model the variation. At the same time, the network must only process N frames
at runtime, which makes the approach very fast. We also considered more clever
partitioning strategies that take the content of the subsections into account.
However, this comes with the drawback that each frame of the video must be
processed at runtime to obtain the partitioning, and the actual improvement
by such smarter partitioning is limited, since most of the variation is already
captured by the random sampling during training.

Up to this point, the different frames in the video are processed indepen-
dently. In order to learn how actions are made up of the different appearances
of the scene over time, we stack the representations of all frames and feed them
into a 3D convolutional network. This network yields the final action class label.

The architecture is very straightforward, and it is obvious that it can be
trained efficiently end-to-end directly on the action class label and on large
datasets. It is also an architecture that can be easily adapted to other video
understanding tasks, as we show later in the video captioning Sect. 5.4.

3.1 ECO Lite and ECO Full

The 3D architecture in ECO Lite is optimized for learning relationships between
the frames, but it tends to waste capacity in case of simple short-term actions
that can be recognized just from the static image content. Therefore, we suggest
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an extension of the architecture by using a 2D network in parallel; see Fig. 2(B).
For the simple actions, this 2D network architecture can simplify processing and
ensure that the static image features receive the necessary importance, whereas
the 3D network architecture takes care of the more complex actions that depend
on the relationship between frames.

The 2D network receives feature maps of all samples and produces N feature
representations. Afterwards, we apply average pooling to get a feature vector
that is a representative for static scene semantics. We call the full architecture
ECO and the simpler architecture in Fig. 2(A) ECO Lite.

3.2 Network Details

2D-Net: For the 2D network (H2D) that analyzes the single frames, we use the
first part of the BN-Inception architecture (until inception-3c layer) [17]. Details
are given in the supplemental material. It has 2D filters and pooling kernels with
batch normalization. We chose this architecture due to its efficiency. The output
of H2D for each single frame consist of 96 feature maps with size of 28 × 28.

3D-Net: For the 3D network H3D we adopt several layers of 3D-Resnet18 [34],
which is an efficient architecture used in many video classification works [34,
39]. Details on the architecture are provided in the supplemental material. The
output of H3D is a one-hot vector for the different class labels.

2D-NetS : In the ECO full design, we use 2D-Nets in parallel with 3D-net to
directly providing static visual semantics of video. For this network, we use
the BN-Inception architecture from inception-4a layer until last pooling layer
[17]. The last pooling layer will produce 1024 dimensional feature vector for
each frame. We apply average pooling to generate video-level feature and then
concatenate with features obtained from 3D-net.

3.3 Training Details

We train our networks using mini-batch SGD with Nesterov momentum and
utilize dropout in each fully connected layer. We split each video into N seg-
ments and randomly select one frame from each segment. This sampling provides
robustness to variations and enables the network to fully exploit all frames. In
addition, we apply the data augmentation techniques introduced in [41]: we resize
the input frames to 240× 320 and employ fixed-corner cropping and scale jit-
tering with horizontal flipping (temporal jittering provided by sampling). After-
wards, we run per-pixel mean subtraction and resize the cropped regions to
224× 224.

The initial learning rate is 0.001 and decreases by a factor of 10 when vali-
dation error saturates for 4 epochs. We train the network with a momentum of
0.9, a weight decay of 0.0005, and mini-batches of size 32.

We initialize the weights of the 2D-Net weights with the BN-Inception archi-
tecture [17] pre-trained on Kinetics, as provided by [41]. In the same way, we use
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SN - Working memory of N frames Q - N Incoming Frames

ECO Predictions

N/2N/2

N frames 
Update SN

Fig. 3. Scheme of our sampling strategy for online video understanding. Half of the
frames are sampled uniformly from the working memory in the previous time step, the
other half from the queue (Q) of incoming frames.

the pre-trained model of 3D-Resnet-18, as provided by [39] for initializing the
weights of our 3D-Net. Afterwards, we train ECO and ECO Lite on the Kinetics
dataset for 10 epochs.

For other datasets, we finetune the above ECO/ECO Lite models on the
new datasets. Due to the complexity of the Something-Something dataset, we
finetune the network for 25 epochs reducing the learning rate every 10 epochs
by a factor of 10. For the rest, we finetune for 4k iterations and the learning
rate drops by a factor of 10 as soons as the validation loss saturates. The whole
training process on UCF101 and HMDB51 takes around 3 h on one Tesla P100
GPU for the ECO architecture. We adjusted the dropout rate and the number
of iterations based on the dataset size.

3.4 Test Time Inference

Most state-of-the-art methods run some post-processing on the network result.
For instance, TSN and ARTNet [39,41], collect 25 independent frames/volumes
per video, and for each frame/volume sample 10 regions by corner and cen-
ter cropping, and their horizontal flipping. The final prediction is obtained by
averaging the scores of all 250 samples. This kind of inference at test time is
computationally expensive and thus unsuitable for real-time setting.

In contrast, our network produces action labels for the whole video directly
without any additional aggregation. We sample N frames from the video, apply
only center cropping then feed them directly to the network, which provides the
prediction for the whole video with a single pass.

4 Online Video Understanding

Most works on video understanding process in batch mode, i.e., they assume
that the whole video is available when processing starts. However, in several
application scenarios, the video will be provided as a stream and the current
belief is supposed to be available at any time. Such online processing is possible
with a sliding window approach, yet this comes with restrictions regarding the
size of the window, i.e., long-term context is missing, or with a very long delay.
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Algorithm 1. Online video understanding
Input : Live video stream (V ), ECO pretrained model (ECONF ), Number of

Samples =Sampling window (N)
Output: Predictions
Initialize an empty queue Q to queue N incoming frames;
Initialize working memory SN ;
Initialize average predictions PA;
while new frames available from V do

Add frame fi from V to queue Q;
if i % N then

SN := Sample 50% frames Q and 50% from SN ;
Empty queue Q;
Feed SN to model ECONF to get output probabilities P ;
PA := Average P and PA ;
Output average predictions PA;

end

end

In this section, we show how ECO can be adapted to run very efficiently in
online mode, too. The modification only affects the sampling part and keeps the
network architecture unchanged. To this end, we partition the incoming video
content into segments of N frames, where N is also the number of frames that
go into the network. We use a working memory SN , which always comprises the
N samples that are fed to the network together with a time stamp. When a
video starts, i.e., only N frames are available, all N frames are sampled densely
and are stored in the working memory SN . With each new time segment, N
additional frames come in, and we replace half of the samples in SN by samples
from this time segment and update the prediction of the network; see Fig. 3.
When we replace samples from SN , we uniformly replace samples from previous
time segments. This ensures that changes can be anticipated in real time, while
the temporal context is taken into account and slowly fades out via the working
memory. Details on the update of SN are shown in Algorithm 1.

The online approach with ECO runs at 675 fps (and at 970 fps with ECO
Lite) on a Tesla P100 GPU. In addition, the model is memory efficient by just
keeping exactly N frames. This enables the implementation also on much smaller
hardware, such as mobile devices. The video in the supplemental material shows
the recorded performance of the online version of ECO in real-time.

5 Experiments

We evaluate our approach on different video understanding problems to show
the generalization ability of approach. We evaluated the network architecture on
the most common action classification datasets in order to compare its perfor-
mance against the state-of-the-art approaches. This includes the older but still
very popular datasets UCF101 [32] and HMDB51 [21], but also the more recent
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Table 1. Comparison to the state-of-the-art on UCF101 and HMDB51 datasets (over
all three splits), using just RGB modality.

Method Pre-training Dataset

UCF101 (%) HMDB51 (%)

I3D [4] ImageNet 84.5 49.8

TSN [41] ImageNet 86.4 53.7

DTPP [47] ImageNet 89.7 61.1

Res3D [34] Sports-1M 85.8 54.9

TSN [41] ImageNet + Kinetics 91.1 -

I3D [4] ImageNet + Kinetics 95.6 74.8

ResNeXt-101 [12] Kinetics 94.5 70.2

ARTNet [39] Kinetics 93.5 67.6

T3D [5] Kinetics 91.7 61.1

ECOEn Kinetics 94.8 72.4

Table 2. Comparing performance of ECO
with state-of-the-art methods on the Kinet-
ics dataset.

Methods Val (%) Test (%)

Top-1 Avg Avg

ResNeXt-101 [12] 65.1 75.4 78.4

Res3D [34] 65.6 75.7 74.4

I3D-RGB [4] − − 78.2

ARTNet [39] 69.2 78.7 77.3

T3D [5] 62.2 − 71.5

ECOEn 70.0 79.7 76.3

Table 3. Comparison with state-of-the-
arts on something-something dataset.
Last row shows the results using both
Flow and RGB.

Methods Val (%) Test (%)

I3D by [10] - 27.23

M-TRN [46] 34.44 33.60

ECOEn Lite 46.4 42.3

ECOEn Lite

{
RGB

Flow
49.5 43.9

datasets Kinetics [20] and Something-Something [10]. Moreover, we applied the
architecture to video captioning and tested it on the widely used Youtube2text
dataset [11]. For all of these datasets, we use the standard evaluation protocol
provided by the authors.

The comparison is restricted to approaches that take the raw RGB videos as
input without further pre-processing, for instance, by providing optical flow or
human pose. The term ECONF describes a network that gets N sampled frames
as input. The term ECOEn refers to average scores obtained from an ensemble
of networks with {16, 20, 24, 32} number of frames.
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5.1 Benchmark Comparison on Action Classification

The results obtained with ECO on the different datasets are shown in Tables 1,
2, and 3 and compare them to the state of the art. For UCF-101, HMDB-51, and
Kinetics, ECO outperforms all existing methods except I3D, which uses a much
heavier network. On Something-Something, it outperforms the other methods
with a large margin. This shows the strong performance of the comparatively
simple and small ECO architecture.

Table 4. Runtime comparison with state-of-the-art approaches using Tesla P100 GPU
on UCF101 and HMDB51 datasets (over all splits). For other approaches, we just
consider one crop per sample to calculate the runtime. We reported runtime without
considering I/O.

Method Inference speed (VPS) UCF101 (%) HMDB51 (%)

Res3D [34] <2 85.8 54.9

TSN [41] 21 87.7 51

EMV [44] 15.6 86.4 -

I3D [4] 0.9 95.6 74.8

ARTNet [39] 2.9 93.5 67.6

ECOLite−4F 237.3 87.4 58.1

ECO4F 163.4 90.3 61.7

ECO12F 52.6 92.4 68.3

ECO20F 32.9 93.0 69.0

ECO24F 28.2 93.6 68.4

Table 5. Accuracy and runtime of ECO and ECO Lite for different numbers of sampled
frames. The reported runtime is without considering I/O.

Model Sampled
frames

Speed (VPS) Accuracy (%)

Titan X Tesla P100 UCF101 HMDB51 Kinetics Someth

ECO 4 99.2 163.4 90.3 61.7 66.2 −
8 49.5 81.5 91.7 65.6 67.8 39.6

16 24.5 41.7 92.8 68.5 69.0 41.4

32 12.3 20.8 93.3 68.7 67.8 −
ECO Lite 4 142.9 237.3 87.4 58.1 57.9 −

8 71.1 115.9 90.2 63.3 − 38.7

16 35.3 61.0 91.6 68.2 64.4 42.2

32 18.2 30.2 93.1 68.3 − 41.3
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5.2 Accuracy-Runtime Comparison

The advantages of the ECO architectures becomes even more prominent as we
look at the accuracy-runtime trade-off shown in Table 4 and Fig. 4. The ECO
architectures yield the same accuracy as other approaches at much faster rates.

Fig. 4. Accuracy-runtime trade-off on UCF101 for various versions of ECO and other
state-of-the-art approaches. ECO is much closer to the top right corner.

Fig. 5. Examples from the Something-Something dataset. In this dataset, the temporal
context plays an even bigger role than on other datasets, since the same action is done
with different objects, i.e., the appearance of the object or background gives almost no
cues about the action.

Previous works typically measure the speed of an approach in frames per
second (fps). Our model with ECO runs at 675 fps (and at 970 fps with ECO
Lite) on a Tesla P100 GPU. However, this does not reflect the time needed to
process a whole video. This becomes relevant for methods like TSN and ours,
which do not look at every frame of the video, and motivates us to report videos
per second (vps) to compare the speed of video understanding methods.

ECO can process videos at least an order of magnitude faster than the other
approaches, making it an excellent architecture for video retrieval applications.
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Fig. 6. Effect of the complexity of an action on the need for denser sampling. While
simple short-term actions (leftmost group) even suffer from more samples, complex
actions (rightmost group) clearly benefit from a denser sampling.

Number of Sampled Frames. Table 5 compares the two architecture vari-
ants ECO and ECO Lite and evaluates the influence on the number of sampled
frames N . As expected, the accuracy drops when sampling fewer frames, as the
subsections get longer and important parts of the action can be missed. This
is especially true for fast actions, such as “throw discus”. However, even with
just 4 samples the accuracy of ECO is still much better than most approaches
in literature, since ECO takes into account the relationship between these 4
instants in the video, even if they are far apart. Figure 6 even shows that for
simple short-term actions, the performance decreases when using more samples.
This is surprising on first glance, but could be explained by the better use of the
network’s capacity for simple actions when there are fewer channels being fed to
the 3D network.

ECO Vs. ECO Lite. The full ECO architecture yields slightly better results
than the plain ECO Lite architecture, but is also a little slower. The differences in
accuracy and runtime between the two architectures can usually be compensated
by using more or fewer samples. On the Something-Something dataset, where
the temporal context plays a much bigger role than on other datasets (see Fig. 5),
ECO Lite performs equally well as the full ECO architecture even with the same
number of input samples, since the raw processing of single image cues has little
relevance on this dataset.

5.3 Early Action Recognition in Online Mode

Figure 7 evaluates our approach in online mode and shows how many frames
the method needs to achieve its full accuracy. We ran this experiment on the
J-HMDB dataset due to the availability of results from other online methods on
this dataset. Compared to these existing methods, ECO reaches a good accuracy
faster and also saturates at a higher absolute accuracy.



ECO: Efficient Convolutional Network for Online Video Understanding 725

Fig. 7. Early action classification results of ECO in comparison to existing online
methods [30,31] on the J-HMDB dataset. The online version of ECO yields a high
accuracy already after seeing a short part of the video. Singh et al. [30] uses both RGB
and optical flow.

Table 6. Captioning results on Youtube2Text (MSVD) dataset.

Methods Metrics

B-3 B-4 METEOR CIDEr

S2VT [38] - - 0.292 -

GRU-RCN [1] - 0.479 0.311 0.678

h-RNN [43] - 0.499 0.326 0.658

TDDF [45] - 0.458 0.333 0.730

AF [14] - 0.524 0.320 0.688

SCN-c3d [9] 0.587 0.482 0.330 0.692

SCN-resnet [9] 0.602 0.506 0.336 0.755

SCN-ensemble of 5 [9] − 0.511 0.335 0.777

ECOLite−16F 0.601 0.504 0.339 0.833

ECO32F 0.616 0.521 0.345 0.857

ECO32F + resnet 0.626 0.535 0.350 0.858

5.4 Video Captioning

To show the wide applicability of the ECO architecture, we also combine it with
a video captioning network. To this end, we use ECO pre-trained on Kinetics
to analyze the video content and train the state-of-the-art Semantic Composi-
tional Network [9] for captioning. We evaluated on the Youtube2Text (MSVD)
dataset [11], which consists of 1,970 video clips with an average duration of 9 s
and covers various types of videos, such as sports, landscapes, animals, cooking,
and human activities. The dataset contains 80,839 sentences and each video is
annotated with around 40 sentences.
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Table 7. Qualitative results on MSVD. First row corresponds to the examples where
ECO improved over SCN and the second row shows the examples where ECO decreased
the quality compared to SCN. ECOL refers to ECOLite−16F , ECO to ECO32F , and
ECOR to ECO32F+resnet.

SCN: a woman is cooking
ECOL: the woman is
seasoning the meat
ECO: a woman is seasoning
some meat
ECOR: a woman is seasoning
some meat

SCN: a man is playing a flute
ECO: a man is playing a violin
ECOR: a man is playing a
violin
ECOR: a man is playing a
violin

SCN: a man is cooking
ECOL: a man is pouring water
into a container
ECO: a man is putting a
lid on a plastic container
ECOR: a man is draining
pasta

SCN: a man is riding a horse
ECOL: a woman is riding a
motorcycle
ECO: a man is riding a horse
ECOR: a man is riding a boat

SCN: a girl is sitting on a couch
ECOL: a baby is sitting
on the bed
ECO: a woman is playing with
a toy
ECOR: a woman is sleeping
on a bed

SCN: two elephants are
walking
ECOL: a rhino is walking
ECO: a group of elephants
are walking
ECOR: a penguin is walking

Table 6 shows that ECO compares favorably to previous approaches across
all popular evaluation metrics (BLEU [27], METEOR [23], CIDEr [37]). Even
ECO Lite is already on-par with a ResNet architecture pre-trained on ImageNet.
Concatenating the features from ECO with those of ResNet improves results fur-
ther. Qualitative examples that correspond to the improved numbers are shown
in Table 7.

6 Conclusions

In this paper, we have presented a simple and very efficient network architecture
that looks only at a small subset of frames from a video and learns to exploit the
temporal context between these frames. This principle can be used in various
video understanding tasks. We demonstrate excellent results on action classi-
fication, online action classification, and video captioning. The computational
load and the memory footprint makes an implementation on mobile devices a
viable future option. The approaches runs 10× to 80× faster than state-of-the-
art methods.
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