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Abstract. Deep neural perception and control networks have become
key components of self-driving vehicles. User acceptance is likely to ben-
efit from easy-to-interpret textual explanations which allow end-users
to understand what triggered a particular behavior. Explanations may
be triggered by the neural controller, namely introspective explanations,
or informed by the neural controller’s output, namely rationalizations.
We propose a new approach to introspective explanations which consists
of two parts. First, we use a visual (spatial) attention model to train
a convolutional network end-to-end from images to the vehicle control
commands, i.e., acceleration and change of course. The controller’s atten-
tion identifies image regions that potentially influence the network’s out-
put. Second, we use an attention-based video-to-text model to produce
textual explanations of model actions. The attention maps of controller
and explanation model are aligned so that explanations are grounded
in the parts of the scene that mattered to the controller. We explore
two approaches to attention alignment, strong- and weak-alignment.
Finally, we explore a version of our model that generates rationalizations,
and compare with introspective explanations on the same video seg-
ments. We evaluate these models on a novel driving dataset with ground-
truth human explanations, the Berkeley DeepDrive eXplanation (BDD-
X) dataset. Code is available at https://github.com/JinkyuKimUCB/
explainable-deep-driving.

Keywords: Explainable deep driving · BDD-X dataset

1 Introduction

Deep neural networks are an effective tool [3,26] to learn vehicle controllers for
self-driving cars in an end-to-end manner. Despite their effectiveness as function
estimators, DNNs are typically cryptic black-boxes. There are no explainable
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states or labels in such a network, and representations are fully distributed as
sets of activations. Explainable models that make deep models more transparent
are important for a number of reasons: (i) user acceptance – self-driving vehicles
are a radical technology for users to accept, and require a very high level of trust,
(ii) understanding and extrapolation of vehicle behavior – users ideally should
be able to anticipate what the vehicle will do in most situations, (iii) effective
communication – they help user communicate preferences to the vehicle and vice
versa.

Ours: “The car is driving forward + because there are no other cars in its lane”
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Human annotator: “The car heads down the street + because the street is clear.”
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Fig. 1. Our model predicts vehicle’s control commands, i.e., an acceleration and a
change of course, at each timestep, while an explanation model generates a natural
language explanation of the rationales, e.g., “The car is driving forward because there
are no other cars in its lane”, and a visual explanation in the form of attention –
attended regions directly influence the textual explanation generation process. (color
figure online)

Explanations can be either rationalizations – explanations that justify the
system’s behavior in a post-hoc manner, or introspective explanations – expla-
nations that are based on the system’s internal state. Introspective explanations
represent causal relationships between the system’s input and its behavior, and
address all the goals above. Rationalizations can address acceptance, (i) above,
but are less helpful with (ii) understanding the causal behavior of the model or
(iii) communication which is grounded in the vehicle’s internal state (known as
theory of mind in human communication).

One way of generating introspective explanations is via visual attention [11,
27]. Visual attention filters out non-salient image regions, and image areas inside
the attended region have potential causal effect on the output (those outside
cannot). As shown in [11], additional salience filtering can be applied so that
the attention map shows only regions that causally affect the output. Visual
attention constrains the reasons for the controllers actions but does not e.g., tie
specific actions to specific input regions e.g., “the vehicle slowed down because



Textual Explanations for Self-Driving Vehicles 579

the light controlling the intersection is red”. It is also likely to be less convenient
for passengers to replay the attention map vs. a (typically on-demand) speech
presentation of a textual explanation.

In this work, we focus on generating textual descriptions and explanations,
such as the pair: “vehicle slows down” and“because it is approaching an inter-
section and the light is red” as in Fig. 1. Natural language has an advantage of
being inherently understandable and does not require familiarity with the design
of an intelligent system in order to provide useful information. In order to train
such a model, we collect explanations from human annotators. Our explanation
dataset is built on top of another large-scale driving dataset [26] collected from
dashboard cameras in human driven vehicles. Annotators view the video dataset,
compose descriptions of the vehicle’s activity and explanations for the actions
that the vehicle driver performed.

Obtaining training data for vehicle explanations is by itself a significant chal-
lenge. The ground truth explanations are in fact often rationalizations (gener-
ated by an observer rather than the driver), and there are additional challenges
with acquiring driver data. But even more than that, it is currently impossi-
ble to obtain human explanations of what the vehicle controller was thinking,
i.e., a real ground truth. Nevertheless our experiments show that using atten-
tion alignment between controller and explanation models generally improves
the quality of explanations, i.e., generates explanations which better match the
human rationalizations of the driving videos.

Our contributions are as follows. (1) We propose an introspective textual
explanation model for self-driving cars to provide easy-to-interpret explanations
for the behavior of a deep vehicle control network. (2) We integrate our explana-
tion generator with the vehicle controller by aligning their attentions to ground
the explanation, and compare two approaches: attention-aligned explanations
and non-aligned rationalizations. (3) We generated a large-scale Berkeley Deep-
Drive eXplanation (BDD-X) dataset with over 6,984 video clips annotated with
driving descriptions, e.g., “The car slows down” and explanations, e.g., “because
it is about to merge with the busy highway”. Our dataset provides a new test-bed
for measuring progress towards developing explainable models for self-driving
cars.

2 Related Work

In this section, we review existing work on end-to-end learning for self-driving
cars as well as work on visual explanation and justification.

End-to-End Learning for Self-Driving Cars: Most of vehicle controllers
for self-driving cars can be divided in two types of approaches [5]: (1) a medi-
ated perception-based approach and (2) an end-to-end learning approach. The
mediated perception-based approach depends on recognizing human-designated
features, such as lane markings, traffic lights, pedestrians or cars, which generally
require demanding parameter tuning for a balanced performance [19]. Notable
examples include [4,23], and [16].
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Fig. 2. Vehicle controller generates spatial attention maps αc for each frame, predicts
acceleration and change of course (ĉt, ât) that condition the explanation. Explanation
generator predicts temporal attention across frames (β) and a spatial attention in each
frame (αj). SAA uses αc, WAA enforces a loss between αj and αc.

As for the end-to-end approaches, recent works [3,26] suggest that neural net-
works can be successfully applied to self-driving cars in an end-to-end manner.
Most of these approaches use behavioral cloning that learns a driving policy as
a supervised learning problem over observation-action pairs from human driving
demonstrations. Among these, [3] present a deep neural vehicle controller net-
work that directly maps a stream of dashcam images to steering controls, while
[26] use a deep neural network that takes input raw pixels and prior vehicle states
and predict vehicle’s future motion. Despite their potential, the effectiveness of
these approaches is limited by their inability to explain the rationale for the
system’s decisions, which makes their behavior opaque and uninterpretable. In
this work, we propose an end-to-end trainable system for self driving cars that
is able to justify its predictions visually via attention maps and textually via
natural language.

Visual and Textual Explanations: The importance of explanations for an
end-user has been studied from the psychological perspective [17,18], showing
that humans use explanations as a guide for learning and understanding by
building inferences and seeking propositions or judgments that enrich their prior
knowledge. They usually seek for explanations to fill the requested gap depending
on prior knowledge and goal in question.

In support of this trend, recently explainability has been growing as a field
in computer vision and machine learning. Especially, there is a growing interest
in introspective deep neural networks. [28] use deconvolution to visualize inner-
layer activations of convolutional networks. [14] propose automatically-generated
captions for textual explanations of images. [2] develop a richer notion of con-
tribution of a pixel to the output. However, a difficulty with deconvolution-style
approaches is the lack of formal measures of how the network output is affected
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by spatially-extended features (rather than pixels). Exceptions to this rule are
attention-based approaches. [11] propose attention-based approach with causal
filtering that removes spurious attention blobs. However, it is also important to
be able to justify the decisions that were made and explain why they are reason-
able in a human understandable manner, i.e., a natural language. For an image
classification problem, [7,8] used an LSTM [9] caption generation model that
generates textual justifications for a CNN model. [21] combine attention-based
model and a textual justification system to produce an interpretable model. To
our knowledge, ours is the first attempt to justify the decisions of a real-time deep
controller through a combination of attention and natural language explanations
on a stream of images.

3 Explainable Driving Model

In this paper, we propose a driving model that explains how a driving deci-
sion was made both (i) by visualizing image regions where the decision maker
attends to and (ii) by generating a textual description and explanation of what
has triggered a particular driving decision, e.g., “the car continues (description)
because traffic flows freely (explanation)”. As we summarize in Fig. 2, our model
involves two parts: (1) a Vehicle controller, which is trained to learn human-
demonstrated vehicle control commands, e.g., an acceleration and a change of
course; our controller uses a visual (spatial) attention mechanism that identi-
fies potentially influential image regions for the network’s output; (2) a Textual
explanation generator, which generates textual descriptions and explanations
controller behavior. The key to the approach is to align the attention maps.

Preprocessing. Our model is trained to predict two vehicle control commands,
i.e., an acceleration and a change of course. At each time t, an acceleration,
at, is measured by taking the derivative of speed measurements, and a change
of course, ct, is computed by taking a difference between a current vehicle’s
course and a smoothed value by using simple exponential smoothing method [10].
We provide details in supplemental material. To reduce computational burden,
we down-sample to 10 Hz and reduce the input dimensionality by resizing raw
images to a 90×160×3 image with nearest-neighbor scaling algorithm. Each
image is then normalized by subtracting the mean from the raw input pixels
and dividing by its standard deviation. This preprocessing is applied to the
latest 4 frames, which are then stacked to produce the final input to the neural
network.

Convolutional Feature Encoder. We use a convolutional neural network to
encode the visual information into a set of visual feature vectors at time t,
i.e., convolutional feature cube Xt = {xt,1,xt,2, . . . ,xt,l} where xt,i ∈ Rd for
i ∈ {1, 2, . . . , l} and l is the number of different spatial regions of the given
input. Each feature vector contains a high-level description of objects present
in a certain input region. This allows us to focus selectively on different regions
of the given image by choosing a subset of these feature vectors. We use a five-
layered convolutional network as in [3,11] and omit max-pooling layers to prevent
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spatial information loss [15]. The output is a three-dimensional feature cube Xt

and the feature block has the size w×h×d at each time t.

3.1 Vehicle Controller

Our vehicle controller is trained in an end-to-end manner. Given a stream of
dashcam images and the vehicle’s (current) sensor measurements, e.g., speed, the
controller predicts the acceleration and the change of course at each timestep.
We utilize a deterministic soft attention mechanism that is trainable by stan-
dard back-propagation methods. The soft attention mechanism applies attention
weights multiplicatively to the features and additively pools the results through
the maps π. Our model feeds the context vectors yc

t produced by the controller
map πc to the controller LSTM:

yc
t = πc({αc

t,i}, {xt,i}) =
l∑

i=1

αc
t,ixt,i (1)

where i = {1, 2, . . . , l}. αc
t,i is an attention weight map output by a spatial soft-

max and satisfies
∑

i α
c
t,i = 1. These attention weights can be interpreted as the

probability over l convolutional feature vectors. A location with a high attention
weight is salient for the task (driving). The attention model fc

attn(Xt,hc
t−1) is

conditioned on the previous LSTM state hc
t−1, and the current feature vectors

Xt. It comprises a fully-connected layer and a spatial softmax to yield normalized
{αc

t,i}.
The outputs of the vehicle controller are the vehicle’s acceleration ât and the

change of course ĉt. To this end, we use additional multi-layer fully-connected
blocks with ReLU non-linearities, denoted by fa(yc

t ,h
c
t) and fc(yc

t ,h
c
t). We also

add the entropy H of the attention weight to the objective function:

Lc =
∑

t

(
(at − ât)2 + (ct − ĉt)2 + λcH(αc

t)
)

(2)

The entropy is computed on the attention map as though it were a probability
distribution. Minimizing loss corresponds to minimizing entropy. Low entropy
attention maps are sparse and emphasize relatively few regions. We use a hyper-
parameter λc to control the strength of the entropy regularization term.

3.2 Attention Alignments

The controller attention map provides input regions that the network attends to,
and these regions have a direct influence on the network’s output. Thus, to yield
“introspective” explanation, we argue that the agent must attend to those areas.
For example, if a vehicle controller predicts“acceleration” by detecting a green
traffic light, the textual justification must mention this evidence, e.g., “because
the light has turned green”. Here, we explain two approaches to align the vehicle
controller and the textual justifier such that they look at the same input regions.
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Strongly Aligned Attention (SAA): A consecutive set of spatially attended
input regions, each of which is encoded as a context vector yc

t by the vehicle
controller, can be directly used to generate a textual explanation (see Fig. 2,
right-top). Thus, models share a single layer of an attention. As we detail in
Sect. 3.3, our explanation module uses temporal attention with weights β to the
controller context vectors {yj

t , t = 1, . . .} directly, and thus allows flexibility in
output tokens relative to input samples.

Weakly Aligned Attention (WAA): Instead of directly using vehicle con-
troller’s attention, an explanation generator can have its own spatial attention
network (see Fig. 2, right-bottom). A loss, i.e., the Kullback-Leibler divergence
(DKL), between the two attention maps makes the explanation generator refer
to the salient objects:

La = λa

∑

t

DKL(αc
t ||αj

t ) = λa

∑

t

l∑

i=1

αc
t,i(log αc

t,i − log αj
t,i) (3)

where αc and αj are the attention maps generated by the vehicle controller and
the explanation generator model, respectively. We use a hyperparameter λa to
control the strength of the regularization term.

3.3 Textual Explanation Generator

Our textual explanation generator takes sequence of video frames of variable
length and generates a variable-length description/explanation. Descriptions and
explanations are typically part of the same sentence in the training data but are
annotated with a separator. In training and testing we use a synthetic separator
token <sep> between description and explanation, but treat them as a single
sequence. The explanation LSTM predicts the description/explanation sequence
and outputs per-word softmax probabilities.

The source of context vectors for the description generator depends on the
type of alignment between attention maps. For weakly aligned attention or ratio-
nalizations, the explanation generator creates its own spatial attention map αj

at each time step t. This map includes a loss against the controller attention
map for weakly-aligned attention, but has no such loss when generating ratio-
nalizations. The attention map αj is applied to the CNN output yielding context
vectors yj

t .
Our textual explanation generator explains the rationale behind the driving

model, and thus we argue that a justifier needs the outputs from the vehicle
motion predictor as an input. We concatenate a tuple (ât, ĉt) with a spatially-
attended context vector yj

t and yc
t respectively for weakly and strongly aligned

attention approaches. This concatenated vector is then used to update the LSTM
for a textual explanation generation.

The explanation module applies temporal attention with weights β to either
the controller context vectors directly {yc

t , t = 1, . . .} (strong alignment), or to
the explanation vectors {yj

t , t = 1, . . .} (weak alignment or rationalization). Such



584 J. Kim et al.

input sequence attention is common in sequence-to-sequence models and allows
flexibility in output tokens relative to input samples [1]. The result of temporal
attention application is (dropping the c or j superscripts on y):

zk = π({βk,t}, {yt}) =
T∑

t=1

βk,tyt (4)

where
∑

t βk,t = 1. The weight βk,t at each time k (for sentence generation)
is computed by an attention model fe

attn({yt},he
k−1), which is similar to the

spatial attention as we explained in previous section (see supplemental material
for details).

To summarize, we minimize the following negative log-likelihood (for training
our justifier) as well as vehicle control estimation loss Lc and attention alignment
loss La:

L = Lc + La −
∑

k

log p(ok|ok−1, h
e
k, zk) (5)

4 Berkeley DeepDrive eXplanation Dataset (BDD-X)

In order to effectively generate and evaluate textual driving rationales we have
collected textual justifications for a subset of the Berkeley Deep Drive (BDD)
dataset [26]. This dataset contains videos, approximately 40 s in length, cap-
tured by a dashcam mounted behind the front mirror of the vehicle. Videos are
mostly captured during urban driving in various weather conditions, featuring

B

A (1)

(1) The car is driving
(2) The car is moving into the right lane
(3) The car moves back into the left lane

(4) The car drives in the left lane
(5) The car moves into the right lane

as there is nothing to impede it.
because it is safe to do so.
because the school bus in front 
of it is stopping.
in order to pass the school bus.
since it has now passed the school 
bus and it is taking the right fork.

(2)

(3) (4) (5)

Action descriptions: Action explanations:
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BDD-X dataset
# Frames 8,400,000
Hours ≈ 77 hours
Condition Urban
Lighting Day/Night

# Annotations 26,228

# Videos 6,984
# Training 5,588
# Validation / Testing 698

Avg. # actions / videos 3.8

Fig. 3. (A) Examples of input frames and corresponding human-annotated action
description and justification of how a driving decision was made. For visualization,
we sample frames at every two seconds. (B) BDD-X dataset details. Over 77 h of driv-
ing with time-stamped human annotations for action descriptions and justifications.



Textual Explanations for Self-Driving Vehicles 585

day and nighttime. The dataset also includes driving on other road types, such
as residential roads (with and without lane markings), and contains all the typ-
ical driver’s activities such as staying in a lane, turning, switching lanes, etc.
Alongside the video data, the dataset provides a set of time-stamped sensor
measurements, such as vehicle’s velocity, course, and GPS location. For sensor
logs unsynchronized with the time-stamps of video data, we use the estimates
of the interpolated measurements.

In order to increase trust and reliability, the machine learning system under-
lying self driving cars should be able to explain why at a certain time they
make certain decisions. Moreover, a car that justifies its decision through nat-
ural language would also be user friendly. Hence, we populate a subset of the
BDD dataset with action description and justification for all the driving events
along with their timestamps. We provide examples from our Berkeley Deep Drive
eXplanation (BDD-X) dataset in Fig. 3(A).

Annotation. We provide a driving video and ask a human annotator in Amazon
Mechanical Turk to imagine herself being a driving instructor. Note that we
specifically select human annotators who are familiar with US driving rules. The
annotator has to describe what the driver is doing (especially when the behavior
changes) and why, from a point of view of a driving instructor. Each described
action has to be accompanied with a start and end time-stamp. The annotator
may stop the video, forward and backward through it while searching for the
activities that are interesting and justifiable.

To ensure that the annotators provide us the driving rationales as well as
descriptions, we require that they separately enter the action description and
the action justification: e.g., “The car is moving into the left lane” and “because
the school bus in front of it is stopping.”. In our preliminary annotation studies,
we found that giving separate annotation boxes is helpful for the annotator to
understand the task and perform better.

Dataset Statistics. Our dataset (see Fig. 3(B)) is composed of over 77 h of
driving within 6,984 videos. The videos are taken in diverse driving conditions,
e.g., day/night, highway/city/countryside, summer/winter etc. On an average of
40 s, each video contains around 3–4 actions, e.g., speeding up, slowing down,
turning right etc., all of which are annotated with a description and an expla-
nation. Our dataset contains over 26K activities in over 8.4M frames. We intro-
duce a training, a validation and a test set, containing 5,588, 698 and 698 videos,
respectively.

Inter-human Agreement. Although we cannot have access to the internal
thought process of the drivers, one can infer the reason behind their actions using
the visual evidence of the scene. Besides, it would be challenging to setup the
data collection process which enables drivers to report justifications for all their
actions, if at all possible. We ensure the high quality of the collected annotations
by relying on a pool of qualified workers (i.e., they pass a qualification test) and
selective manual inspection.
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Further, we measure the inter-human agreement on a subset of 998 training
videos, each of which has been annotated by two different workers. Our analysis
is as follows. In 72% of videos the number of annotated intervals differs by
less than 3. The average temporal IoU across annotators is 0.63 (SD = 0.21).
When IoU > 0.5 the CIDEr score across action descriptions is 142.60, across
action justifications it is 97.49 (random choice: 39.40/28.39, respectively). When
IoU > 0.5 and action descriptions from two annotators are identical (165 clips1)
the CIDEr score across justifications is 200.72, while a strong baseline, selecting
a justification from a different video with the same action description, results
in CIDEr score 136.72. These results show an agreement among annotators and
relevance of collected action descriptions and justifications.

Coverage of Justifications. BDD-X dataset has over 26k annotations (77 h)
collected from a substantial random subset of large-scale crowd-sourced driving
video dataset, which consists of all the typical driver’s activities during urban
driving. The vocabulary of training action descriptions and justifications is 906
and 1,668 words respectively, suggesting that justifications are more diverse than
descriptions. Some of the common actions are (frequency decreasing): moving
forward, stopping, accelerating, slowing, turning, merging, veering, pulling [in].
Justifications cover most of the relevant concepts: traffic signs/lights, cars, lanes,
crosswalks, passing, parking, pedestrians, waiting, blocking, safety etc.

5 Results and Discussion

Here, we first provide our training and evaluation details, then make a quanti-
tative and qualitative analysis of our vehicle controller and our textual justifier.

Input images

1
2
3
4

x10-3

5
6

Controller’s Attention heat maps
= 0 = 10 = 100 = 1000

Fig. 4. Vehicle controller’s attention maps in terms of four different entropy regu-
larization coefficient λc={0,10,100,1000}. Red parts indicate where the model pays
more attention. Higher value of λc makes the attention maps sparser. We observe that
sparser attention maps improves the performance of generating textual explanations,
while control performance is slightly degraded.

1 The number of video intervals (not full videos), where the provided action descrip-
tions (not explanations) are identical (common actions e.g., “the car slows down”).
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Training and Evaluation Details. As the convolutional feature encoder, we
use 5-layer CNN [3] that produces a 12×20×64-dimensional convolutional feature
cube from the last layer. The controller following the CNN has 5 fully connected
layers (i.e., #hidden dims: 1164, 100, 50, 10, respectively), which predict the
acceleration and the change of course, and is trained end-to-end from scratch.
Using other more expressive networks may give a performance boost over our
base CNN configuration, but these explorations are out of our scope. Given
the obtained convolutional feature cube, we first train our vehicle controller,
and then the explanation generator (single layer LSTM unless stated otherwise)
by freezing the control network. For training, we use Adam optimizer [12] and
dropout [22] of 0.5 at hidden state connections and Xavier initialization [6]. The
standard dataset is split as 80% (5,588 videos) as the training set, 10% (698
videos) as the test, and 10% (698 videos) as the validation set. Our model takes
less than a day to train on a single NVIDIA Titan X GPU.

For evaluating the vehicle controller we use the mean absolute error (lower is
better) and the distance correlation (higher is better) and for the justifier we use
BLEU [20], METEOR [13], and CIDEr-D [24], as well as human evaluation. The
former metrics are widely used for the evaluation of video and image captioning
models automatically against ground truth.

5.1 Evaluating Vehicle Controller

We start by quantitatively comparing variants of our vehicle controller and the
state of the art, which include variants of the work by Bojarski et al. [3] and Kim
et al. [11] in Table 1. Note that these works differ from ours in that their output is
the curvature of driving, while our model estimates continuous acceleration and
the change of course values. Thus, their models have a single output, while ours
estimate both control commands. In this experiment, we replaced their output
layer with ours. For a fair comparison, we use an identical CNN for all models.

Table 1. Comparing variants of our vehicle controller with different values of the
entropy regularization coefficient λc={0, 10, 100, 1000} and the state-of-the-art. High
value of λc produces low entropy attention maps that are sparse and emphasize rel-
atively few regions. †: Models use a single image frame as an input. The standard
deviation is in braces. Abbreviation: FC (fully connected layer), P (prior inputs)

Model λc Mean of absolute error (MAE) Mean of distance correlation

Acceleration

(m/s2)

Course

(degree)

Acceleration

(m/s2)

Course

(degree)

CNN+FC [3]† - 6.92 [7.50] 12.1 [19.7] 0.17 [0.15] 0.16 [0.14]

CNN+FC [3]+P - 6.09 [7.73] 6.74 [14.9] 0.21 [0.18] 0.39 [0.33]

CNN+LSTM+Attention [11]† - 6.87 [7.44] 10.2 [18.4] 0.19 [0.16] 0.22 [0.18]

CNN+LSTM+Attention+P (Ours) 1000 5.02 [6.32] 6.94 [15.4] 0.65 [0.25] 0.43 [0.33]

CNN+LSTM+Attention+P (Ours) 100 2.68 [3.73] 6.17 [14.7] 0.78 [0.28] 0.43 [0.34]

CNN+LSTM+Attention+P (Ours) 10 2.33 [3.38] 6.10 [14.7] 0.81 [0.27] 0.46 [0.35]

CNN+LSTM+Attention+P (Ours) 0 2.29 [3.33] 6.06 [14.7] 0.82 [0.26] 0.47 [0.35]
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In this experiment, each model estimates vehicle’s acceleration and the
change of course. Our vehicle controller predicts acceleration and the change
of course, which generally requires prior knowledge of vehicle’s current state,
i.e., speed and course, and navigational inputs, especially in urban driving.
We observe that the use of the latest four consecutive frames and prior inputs
(i.e., vehicle’s motion measurement and navigational information) improves the
control prediction accuracy (see 3rd vs. 7th row), while the use of visual attention
also provides improvements (see 1st vs. 3rd row). Specifically, our model without
the entropy regularization term (last row) performs the best compared to CNN
based approaches [3] and [11]. The improvement is especially pronounced for
acceleration estimation.

In Fig. 4 we compare input images (first column) and corresponding attention
maps for different entropy regularization coefficients λc={0, 10, 100, 1000}. Red
is high attention, blue is low. As we see, higher λc lead to sparser maps. For
better visualization, an attention map is overlaid by its contour lines and an
input image.

Quantitatively, the controller performance (error and correlation) slightly
degrade as λc increases and the attention maps become more sparse (see bottom
four rows in Table 1). So there is some tension between sparse maps (which are
more interpretable), and controller performance. An alternative to regulariza-
tion, [11] use causal filtering over the controller’s attention maps and achieve
about 60% reduction in “hot” attention pixels. Causal filtering is desirable for
the present work not only to improve sparseness but because after causal fil-
tering,“hot” regions necessarily do have a causal effect on controller behavior,
whereas unfiltered attention regions may not. We will explore it in future work.

5.2 Evaluating Textual Explanations

In this section, we evaluate textual explanations against the ground truth expla-
nation using automatic evaluation measures, and also provide human evaluation
followed by a qualitative analysis.

Automatic Evaluation. For state-of-the-art comparison, we implement the
S2VT [25] and its variants. Note that in our implementation S2VT uses our CNN
and does not use optical flow features. In Table 2, we report a summary of our
experiment validating the quantitative effectiveness of our approach. Rows 5–10
show that best explanation results are generally obtained with weakly-aligned
attention. Comparing with row 4, the introspective models all gave higher scores
than the rationalization model for explanation generation. Description scores are
more mixed, but most of the introspective model scores are higher. As we will see
in the next section, our rationalization model focuses on visual saliencies, which
is sometimes different from what controller actually “looks at”. For example, in
Fig. 5 (5th example), our controller sees the front vehicle and our introspective
models generate explanations such as“because the car in front is moving slowly”,
while our rationalization model does not see the front vehicle and generates
“because it’s turning to the right”.
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Table 2. Comparing generated and ground truth (columns 6–8) descriptions (e.g., “the
car stops”) and explanations (e.g., “because the light is red”). We implement S2VT [25]
and variants with spatial attention (SA) and temporal attention (TA) as a baseline.
We tested two different attention alignment approaches, i.e., WAA (weakly aligned
attention) and SAA (strongly aligned attention), with different combinations of two
regularization coefficients: λa={0, 10} for the attention alignment and λc={0, 10, 100}
for the vehicle controller. Rationalization baseline relies on our model (WAA approach)
but has no attention alignment. Note that we report all values as a percentage.

As our training data are human observer annotations of driving videos, and
they are not the explanations of drivers, they are post-hoc rationalizations. How-
ever, based on the visual evidence, (e.g., the existence of a turn right sign explains
why the driver has turned right even if we do not have access to the exact thought
process of the driver), they reflect typical causes of human driver behavior. The
data suggest that grounding the explanations in controller internal state helps
produce explanations that better align with human third-party explanations.
Biasing the explanations toward controller state (which the WAA and SAA
models do) improves their plausibility from a human perspective, which is a
good sign. We further analyze human preference in the evaluation below.

Human Evaluation. In our first human evaluation experiment the human
judges are only shown the descriptions, while in the second experiment they
only see the explanations (e.g. “The car ... because < explanation >”), to
exclude the effect of explanations/descriptions on the ratings, respectively. We
randomly select 250 video intervals and compare the Rationalization, WAA
(λa=10, λc=100) and SAA (λc=100) predictions. The humans are asked to rate
a description/explanation on the scale {1..4} (1: correct and specific/detailed, 2:
correct, 3: minor error, 4: major error). We collect ratings from 3 human judges
for each task. Finally, we compute the majority vote, i.e., at least 2 out of 3
judges should rate the description/explanation with a score 1 or 2.
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Table 3. Human evaluation of the generated action descriptions and explanations for
randomly chosen 250 video intervals. We measure the success rate where at least 2
human judges rate the generated description or explanation with a score 1 (correct
and specific/detailed) or 2 (correct).

Type Model Control inputs λa λc Correctness rate

Explanations Descriptions

Rationalization Ours (no constraints) Y 0 0 64.0% 92.8%

Introspective
explanation

Ours (with SAA) Y - 100 62.4% 90.8%

Ours (with WAA) Y 10 100 66.0% 93.5%
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The car steadily driving + now that the cars are moving.
The car is driving forward + because traffic is moving freely.
The car heads down the road + because traffic is moving at a steady pace.
The car slows down + because it’s getting ready to a stop sign.

The car is slowing down + in preparation of a turn.
The car is slowing down + because the car in front is moving slowly.
The car is slowing down + because the car in front has stopped.
The car slows down + because it’s turning to the right.

The car turns left + since there were no oncoming cars.
The car is turning left + to enter a road.
The car turns left + because the road is clear
The car is slowing down + because it’s turning to the left.

The car slows down + since it is about to turn left.
The car slows down + because it is preparing to turn to the road.
The car is slowing + because it is approaching a stop sign.
The car slows + because there is a stop sign.

The car is stopped + while it waits for traffic in front of it to move.

The car is stopped + because traffic is stopped.
The car is stopped + because the car in front of it is stopped.

The car is stopped + because it is parked in the left lane.

The car is steering to the left and moving forward slowly 
+ the car is negotiating a left hand corner.

The car slows down + because it’s turning to the left.
The car heads down the road 
+ because the traffic is moving at a steady speed.

The car is moving forward + because the road is clear

1 2 3 4 5 6

1

2

3

4

5

6

Human:
Ours (WAA):
Ours (SAA):

Rationalization:

Human:
Ours (WAA):
Ours (SAA):

Rationalization:

Human:

Ours (WAA):
Ours (SAA):

Rationalization:

Fig. 5. Example descriptions and explanations generated by our model compared to
human annotations. We provide (top row) input raw images and attention maps by
(from the 2nd row) vehicle controller, textual explanation generator, and rationalization
model (Note: (λc, λa) = (100,10) and the synthetic separator token is replaced by ‘+’).

As shown in Table 3, our WAA model outperforms the other two, supporting
the results above. Interestingly, Rationalization does better than SAA on this
subset, according to humans. This is perhaps because the explanation in SAA
relies on the exact same visual evidence as the controller, which may include
counterfactually important regions (i.e., there could be a stop sign here), but
may confuse the explanation module.
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Qualitative Analysis of Textual Justifier. As Fig. 5 shows, our proposed
textual explanation model generates plausible descriptions and explanations,
while our model also provides attention visualization of their evidence. In the
first example of Fig. 5, controller sees neighboring vehicles and lane markings,
while explanation model generates “the car is driving forward (description)”
and“because traffic is moving freely (explanation)”. In Fig. 5, we also provide
other examples that cover common driving situations, such as driving forward
(1st example), slowing/stopping (2nd, 3rd, and 5th), and turning (4th and 6th).
We also observe that our explanations have significant diversity, e.g., they provide
various reasons for stopping: red lights, stop signs, and traffic. We provide more
diverse examples as supplemental materials.

6 Conclusion

We described an end-to-end explainable driving model for self-driving cars by
incorporating a grounded introspective explanation model. We showed that (i)
incorporation of an attention mechanism and prior inputs improves vehicle con-
trol prediction accuracy compared to baselines, (ii) our grounded (introspective)
model generates accurate human understandable textual descriptions and expla-
nations for driving behaviors, (iii) attention alignment is shown to be effective
at combining the vehicle controller and the justification model, and (iv) our
BDD-X dataset allows us to train and automatically evaluate our interpretable
justification model by comparing with human annotations.

Recent work [11] suggests that causal filtering over attention heat maps can
achieve a useful reduction in explanation complexity by removing spurious blobs,
which do not significantly affect the output. Causal filtering idea would be
worth exploring to obtain causal attention heat maps, which can provide the
causal ground of reasoning. Furthermore, it would be beneficial to incorporate
stronger perception pipeline, e.g. object detectors, to introduce more “grounded”
visual representations and further improve the quality and diversity of the gener-
ated explanations. Besides, incorporating driver’s eye gaze into our explanation
model for mimicking driver’s behavior, would be an interesting potential future
direction.
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