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Abstract. Driven by deep neural networks and large scale datasets,
scene text detection methods have progressed substantially over the past
years, continuously refreshing the performance records on various stan-
dard benchmarks. However, limited by the representations (axis-aligned
rectangles, rotated rectangles or quadrangles) adopted to describe text,
existing methods may fall short when dealing with much more free-form
text instances, such as curved text, which are actually very common in
real-world scenarios. To tackle this problem, we propose a more flexible
representation for scene text, termed as TextSnake, which is able to effec-
tively represent text instances in horizontal, oriented and curved forms.
In TextSnake, a text instance is described as a sequence of ordered, over-
lapping disks centered at symmetric axes, each of which is associated with
potentially variable radius and orientation. Such geometry attributes are
estimated via a Fully Convolutional Network (FCN) model. In experi-
ments, the text detector based on TextSnake achieves state-of-the-art or
comparable performance on Total-Text and SCUT-CTW1500, the two
newly published benchmarks with special emphasis on curved text in nat-
ural images, as well as the widely-used datasets ICDAR 2015 and MSRA-
TD500. Specifically, TextSnake outperforms the baseline on Total-Text
by more than 40% in F-measure.
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1 Introduction

In recent years, the community has witnessed a surge of research interest and
effort regarding the extraction of textual information from natural scenes, a.k.a.
scene text detection and recognition [48]. The driving factors stem from both
application prospect and research value. On the one hand, scene text detec-
tion and recognition have been playing ever-increasingly important roles in a
wide range of practical systems, such as scene understanding, product search,
and autonomous driving. On the other hand, the unique traits of scene text,
for instance, significant variations in color, scale, orientation, aspect ratio and
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pattern, make it obviously different from general objects. Therefore, particular
challenges are posed and special investigations are required.

(a) (b) (c) (d)

Fig. 1. Comparison of different representations for text instances. (a) Axis-aligned rect-
angle. (b) Rotated rectangle. (c) Quadrangle. (d) TextSnake. Obviously, the proposed
TextSnake representation is able to effectively and precisely describe the geometric
properties, such as location, scale, and bending of curved text with perspective dis-
tortion, while the other representations (axis-aligned rectangle, rotated rectangle or
quadrangle) struggle with giving accurate predictions in such cases.

Text detection, as a prerequisite step in the pipeline of textual information
extraction, has recently advanced substantially with the development of deep
neural networks and large image datasets. Numerous innovative works [6,9,10,
17,22,28–31,34,36,39,40,46,47] are proposed, achieving excellent performances
on standard benchmarks.

However, most existing methods for text detection shared a strong assump-
tion that text instances are roughly in a linear shape and therefore adopted
relatively simple representations (axis-aligned rectangles, rotated rectangles or
quadrangles) to describe them. Despite their progress on standard benchmarks,
these methods may fall short when handling text instances of irregular shapes,
for example, curved text. As depicted in Fig. 1, for curved text with perspective
distortion, conventional representations struggle with giving precise estimations
of the geometric properties.

In fact, instances of curved text are quite common in real life [15,43]. In this
paper, we propose a more flexible representation that can fit well text of arbitrary
shapes, i.e., those in horizontal, multi-oriented and curved forms. This represen-
tation describes text with a series of ordered, overlapping disks, each of which is
located at the center axis of text region and associated with potentially variable
radius and orientation. Due to its excellent capability in adapting for the complex
multiplicity of text structures, just like a snake changing its shape to adapt for
the external environment, the proposed representation is named as TextSnake.
The geometry attributes of text instances, i.e., central axis points, radii and
orientations, are estimated with a single Fully Convolutional Network (FCN)
model. Besides ICDAR 2015 and MSRA-TD500, the effectiveness of TextSnake
is validated on Total-Text and SCUT-CTW1500, which are two newly-released
benchmarks mainly focused on curved text. The proposed algorithm achieves
state-of-the-art performance on the two curved text datasets, while at the same
time outperforming previous methods on horizontal and multi-oriented text,
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even in the single-scale testing mode. Specifically, TextSnake achieves significant
improvement over the baseline on Total-Text by 40.0% in F-measure.

In summary, the major contributions of this paper are three-fold: (1) We
propose a flexible and general representation for scene text of arbitrary shapes;
(2) Based on this representation, an effective method for scene text detection
is proposed; (3) The proposed text detection algorithm achieves state-of-the-art
performance on several benchmarks, including text instances of different forms
(horizontal, oriented and curved).

2 Related Work

In the past few years, the most prominent trend in the area of scene text detec-
tion is the transfer from conventional methods [3,24] to deep learning based
methods [12,13,17,29,47]. In this section, we look back on relevant previous
works. For comprehensive surveys, please refer to [41,48]. Before the era of deep
learning, SWT [3] and MSER [24] are two representative algorithms that have
influenced a variety of subsequent methods [11,42]. Modern methods are mostly
based on deep neural networks, which can be coarsely classified into two cate-
gories: regression based and segmentation based.

Regression based text detection methods [17] mainly draw inspirations from
general object detection frameworks. TextBoxes [17] adopted SSD [19] and added
“long” default boxes and filters to handle the significant variation of aspect ratios
of text instances. Based on Faster-RCNN [26], Ma et al. [23] devised Rotation
Region Proposal Networks (RRPN) to detect arbitrary-Oriented text in natural
images. EAST [47] and Deep Regression [8] both directly produce the rotated
boxes or quadrangles of text, in a per-pixel manner.

Segmentation based text detection methods cast text detection as a semantic
segmentation problem and FCN [21] is often taken as the reference framework.
Yao et al. [39] modified FCN to produce multiple heatmaps corresponding var-
ious properties of text, such as text region and orientation. Zhang et al. [46]
first use FCN to extract text blocks and then hunt character candidates from
these blocks with MSER [24]. To better separate adjacent text instances, the
method of [36] distinguishes each pixel into three categories: non-text, text bor-
der and text. These methods mainly vary in the way they separate text pixels
into different instances.

The methods reviewed above have achieved excellent performances on various
benchmarks in this field. However, most works, except for [6,15,39], have not
payed special attention to curved text. In contrast, the representation proposed
in this paper is suitable for text of arbitrary shapes (horizontal, multi-oriented
and curved). It is primarily inspired by [6,39] and the geometric attributes of
text are also estimated via the multiple-channel outputs of an FCN-based model.
Unlike [39], our algorithm does not need character level annotations. In addition,
it also shares a similar idea with SegLink [29], by successively decomposing
text into local components and then composing them back into text instances.
Analogous to [45], we also detect linear symmetry axes of text instances for text
localization.
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Another advantage of the proposed method lies in its ability to reconstruct
the precise shape and regional strike of text instances, which can largely facilitate
the subsequent text recognition process, because all detected text instances could
be conveniently transformed into a canonical form with minimal distortion and
background (see the example in Fig. 9).

3 Methodology

In this section, we first introduce the new representation for text of arbitrary
shapes. Then we describe our method and training details.

text region text center line

θ

 disk

Fig. 2. Illustration of the proposed TextSnake representation. Text region (in yellow) is
represented as a series of ordered disks (in blue), each of which is located at the center
line (in green, a.k.a symmetric axis or skeleton) and associated with a radius r and an
orientation θ. In contrast to conventional representations (e.g., axis-aligned rectangles,
rotated rectangles and quadrangles), TextSnake is more flexible and general, since it
can precisely describe text of different forms, regardless of shapes and lengths. (Color
figure online)

3.1 Representation

As shown in Fig. 1, conventional representations for scene text (e.g., axis-aligned
rectangles, rotated rectangles and quadrangles) fail to precisely describe the
geometric properties of text instances of irregular shapes, since they generally
assume that text instances are roughly in linear forms, which does not hold
true for curved text. To address this problem, we propose a flexible and general
representation: TextSnake. As demonstrated in Fig. 2, TextSnake expresses a text
instance as a sequence of overlapping disks, each of which is located at the center
line and associated with a radius and an orientation. Intuitively, TextSnake is
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able to change its shape to adapt for the variations of text instances, such as
rotation, scaling and bending.

Mathematically, a text instance t, consisting of several characters, can be
viewed as an ordered list S(t). S(t) = {D0,D1, · · · ,Di, · · · ,Dn}, where Di

stands for the ith disk and n is the number of the disks. Each disk D is asso-
ciated with a group of geometry attributes, i.e. D = (c, r, θ), in which c, r and
θ are the center, radius and orientation of disk D, respectively. The radius r is
defined as half of the local width of t, while the orientation θ is the tangential
direction of the center line around the center c. In this sense, text region t can
be easily reconstructed by computing the union of the disks in S(t).

Note that the disks do not correspond to the characters belonging to t. How-
ever, the geometric attributes in S(t) can be used to rectify text instances of
irregular shapes and transform them into rectangular, straight image regions,
which are more friendly to text recognizers.

Fig. 3. Method framework: network output and post-processing

3.2 Pipeline

In order to detect text with arbitrary shapes, we employ an FCN model to
predict the geometry attributes of text instances. The pipeline of the proposed
method is illustrated in Fig. 3. The FCN based network predicts score maps of
text center line (TCL) and text regions (TR), together with geometry attributes,
including r, cosθ and sinθ. The TCL map is further masked by the TR map since
TCL is naturally part of TR. To perform instance segmentation, disjoint set is
utilized, given the fact that TCL does not overlap with each other. A striding
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algorithm is used to extract the central axis point lists and finally reconstruct
the text instances.

Fig. 4. Network Architecture. Blue blocks are convolution stages of VGG-16. (Color
figure online)

3.3 Network Architecture

The whole network is shown in Fig. 4. Inspired by FPN [18] and U-net [27],
we adopt a scheme that gradually merges features from different levels of the
stem network. The stem network can be convolutional networks proposed for
image classification, e.g. VGG-16/19 [33] and ResNet [7]. These networks can be
divided into 5 stages of convolutions and a few additional fully-connected (FC)
layers. We remove the FC layers, and feed the feature maps after each stage to
the feature merging network. We choose VGG-16 as our stem network for the
sake of direct and fair comparison with other methods.

As for the feature merging network, several stages are stacked sequentially,
each consisting of a merging unit that takes feature maps from the last stage
and corresponding stem network layer. Merging unit is defined by the following
equations:

h1 = f5 (1)

hi = conv3×3(conv1×1[f6−i;UpSampling×2(hi−1)]), for i = 2, 3, 4, 5 (2)

where fi denotes the feature maps of the i-th stage in the stem network and
hi is the feature maps of the corresponding merging units. In our experiments,
upsampling is implemented as deconvolutional layer as proposed in [44].

After the merging, we obtain a feature map whose size is 1
2 of the input

images. We apply an additional upsampling layer and 2 convolutional layers to
produce dense predictions:

hfinal = UpSampling×2(h5) (3)

P = conv1×1(conv3×3(hfinal)) (4)
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where P ∈ Rh×w×7, with 4 channels for logits of TR/TCL, and the last 3
respectively for r, cosθ and sinθ of the text instance. As a result of the additional
upsampling layer, P has the same size as the input image. The final predictions
are obtained by taking softmax for TR/TCL and regularizing cosθ and sinθ so
that the squared sum equals 1.

3.4 Inference

After feed-forwarding, the network produces the TCL, TR and geometry maps.
For TCL and TR, we apply thresholding with values Ttcl and Ttr respectively.
Then, the intersection of TR and TCL gives the final prediction of TCL. Using
disjoint-set, we can efficiently separate TCL pixels into different text instances.

Finally, a striding algorithm is designed to extract an ordered point list that
indicates the shape and course of the text instance, and also reconstruct the
text instance areas. Two simple heuristics are applied to filter out false positive
text instances: (1) The number of TCL pixels should be at least 0.2 times their
average radius; (2) At least half of pixels in the reconstructed text area should
be classified as TR.

Fig. 5. Framework of post-processing algorithm. Act(a) centralizing: relocate a given
point to the central axis; Act(b) striding: a directional search towards the ends of text
instances; Act(c) sliding: a reconstruction by sliding a circle along the central axis.

The procedure for the striding algorithm is shown in Fig. 5. It features 3 main
actions, denoted as Act(a), Act(b), and Act(c), as illustrated in Fig. 6. Firstly,
we randomly select a pixel as the starting point, and centralize it. Then, the
search process forks into two opposite directions, striding and centralizing until
it reaches the ends. This process would generates 2 ordered point list in two
opposite directions, which can be combined to produce the final central axis list
that follows the course of the text and describe the shape precisely. Details of
the 3 actions are shown below.
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Fig. 6. Mechanisms of centralizing, striding and sliding

Act(a) Centralizing. As shown in Fig. 6, given a point on the TCL, we can
draw the tangent line and the normal line, respectively denoted as dotted line
and solid line. This step can be done with ease using the geometry maps. The
midpoint of the intersection of the normal line and the TCL area gives the
centralized point.

Act(b) Striding. The algorithm takes a stride to the next point to search.
With the geometry maps, the displacement for each stride is computed and
represented as ( 12r × cosθ, 1

2r × sinθ) and (− 1
2r × cosθ,− 1

2r × sinθ), respectively
for the two directions. If the next step is outside the TCL area, we decrement
the stride gradually until it’s inside, or it hits the ends.

Act(c) Sliding. The algorithm iterates through the central axis and draw circles
along it. Radii of the circles are obtained from the r map. The area covered by
the circles indicates the predicted text instance.

In conclusion, taking advantage of the geometry maps and the TCL that
precisely describes the course of the text instance, we can go beyond detection
of text and also predict their shape and course. Besides, the striding algorithm
saves our method from traversing all pixels that are related.

3.5 Label Generation

Extracting Text Center Line. For triangles and quadrangles, it’s easy to
directly calculate the TCL with algebraic methods, since in this case, TCL is a
straight line. For polygons of more than 4 sides, it’s not easy to derive a general
algebraic method.

Instead, we propose a method that is based on the assumption that, text
instances are snake-shaped, i.e. that it does not fork into multiple branches. For
a snake-shaped text instance, it has two edges that are respectively the head and
the tail. The two edges near the head or tail are running parallel but in opposite
direction.

For a text instance t represented by a group of vertexes {v0, v1, v2, ..., vn} in
clockwise or counterclockwise order, we define a measurement for each edge ei,i+1

as M(ei,i+1) = cos〈ei+1,i+2, ei−1,i〉. Intuitively, the two edges with M nearest to
−1, e.g. AH and DE in Fig. 7, are the head and tail. After that, equal number
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Fig. 7. Label Generation. (a) Determining text head and tail; (b) Extracting text
center line and calculating geometries; (c) Expanded text center line.

of anchor points are sampled on the two sidelines, e.g. ABCD and HGFE in
Fig. 7. TCL points are computed as midpoints of corresponding anchor points.
We shrink the two ends of TCL by 1

2rend pixels, so that TCL are inside the TR
and makes it easy for the network to learn to separate adjacent text instances.
rend denotes the radius of the TCL points at the two ends. Finally, we expand
the TCL area by 1

5r, since a single-point line is prone to noise.

Calculating r and θ. For each points on TCL: (1) r is computed as the distance
to the corresponding point on sidelines; (2) θ is computed by fitting a straight line
on the TCL points in the neighborhood. For non-TCL pixels, their corresponding
geometry attributes are set to 0 for convenience.

3.6 Training Objectives

The proposed model is trained end-to-end, with the following loss functions as
the objectives:

L = Lcls + Lreg (5)

Lcls = λ1Ltr + λ2Ltcl (6)

Lreg = λ3Lr + λ4Lsin + λ5Lcos (7)

Lcls in Eq. 5 represents classification loss for TR and TCL, and Lreg for
regression loss of r, cosθ and sinθ. In Eq. 6, Ltr and Ltcl are cross-entropy loss
for TR and TCL. Online hard negative mining [32] is adopted for TR loss, with
the ratio between the negatives and positives kept to 3:1 at most. For TCL, we
only take into account pixels inside TR and adopt no balancing methods.

In Eq. 7, regression loss, i.e. Lr Lsin and Lcos, are calculated as Smoothed-L1
loss [4]:

⎛
⎝

Lr

Lcos

Lsin

⎞
⎠ = SmoothedL1

⎛
⎜⎝

r̂−r
r

ĉosθ − cosθ

ŝinθ − sinθ

⎞
⎟⎠ (8)
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where r̂, ĉosθ and ŝinθ are the predicted values, while r, cosθ and sinθ are their
ground truth correspondingly. Geometry loss outside TCL are set to 0, since
these attributes make no sense for non-TCL points.

The weights constants λ1, λ2, λ3, λ4 and λ5 are all set to 1 in our experiments.

4 Experiments

In this section, we evaluate the proposed algorithm on standard benchmarks
for scene text detection and compare it with previous methods. Analyses and
discussions regarding our algorithm are also given.

4.1 Datasets

The datasets used for the experiments in this paper are briefly introduced below:
SynthText [5] is a large sacle dataset that contains about 800K synthetic

images. These images are created by blending natural images with text rendered
with random fonts, sizes, colors, and orientations, thus these images are quite
realistic. We use this dataset to pre-train our model.

TotalText [15] is a newly-released benchmark for text detection. Besides hor-
izontal and multi-Oriented text instances, the dataset specially features curved
text, which rarely appear in other benchmark datasets, but are actually quite
common in real environments. The dataset is split into training and testing sets
with 1255 and 300 images, respectively.

CTW1500 [43] is another dataset mainly consisting of curved text. It con-
sists of 1000 training images and 500 test images. Text instances are annotated
with polygons with 14 vertexes.

ICDAR 2015 is proposed as the Challenge 4 of the 2015 Robust Reading
Competition [14] for incidental scene text detection. There are 1000 images for
training and 500 images for testing. The text instances from this dataset are
labeled as word level quadrangles.

MSRA-TD500 [38] is a dataset with multi-lingual, arbitrary-oriented and
long text lines. It includes 300 training images and 200 test images with text line
level annotations. Following previous works [22,47], we also include the images
from HUST-TR400 [37] as training data when fine-tuning on this dataset, since
its training set is rather small.

For experiments on ICDAR 2015 and MSRA-TD500, we fit a minimum
bounding rectangle based on the output text area of our method.

4.2 Data Augmentation

Images are randomly rotated, and cropped with areas ranging from 0.24 to 1.69
and aspect ratios ranging from 0.33 to 3. After that, noise, blur, and lightness
are randomly adjusted. We ensure that the text on the augmented images are
still legible, if they are legible before augmentation.
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Fig. 8. Qualitative results by the proposed method. Top: detected text contours (in
yellow) and ground truth annotations (in green). Bottom: combined score maps for TR
(in red) and TCL (in yellow). From left to right in column: image from ICDAR 2015,
TotalText, CTW1500 and MSRA-TD500. Best viewed in color. (Color figure online)

4.3 Implementation Details

Our method is implemented in Tensorflow 1.3.0 [1]. The network is pre-trained
on SynthText for one epoch and fine-tuned on other datasets. We adopt the
Adam optimazer [16] as our learning rate scheme. During the pre-training stage,
the learning rate is fixed to 10−3. During the fine-tuning stage, the learing rate
is set to 10−3 initially and decays exponentially with a rate of 0.8 every 5000
iterations. During fine-tuning, the number of iterations is decided by the sizes
of datasets. All the experiments are conducted on a regular workstation (CPU:
Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz; GPU:Titan X; RAM: 384 GB).
We train our model with the batch size of 32 on 2 GPUs in parallel and evaluate
our model on 1 GPU with batch size set as 1. Hyper-parameters are tuned by
grid search on training set.

4.4 Experiment Results

Experiments on Curved Text (Total-Text and CTW1500). Fine-tuning
on these two datasets stops at about 5k iterations. Thresholds Ttr, Ttcl are set to
(0.4, 0.6) and (0.4, 0.5) respectively on Total-Text and CTW1500. In testing, all
images are rescaled to 512× 512 for Total-Text, while for CTW1500, the images
are not resized, since the images in CTW1500 are rather small (The largest
image is merely 400 × 600). For comparison, we also evaluated the models of
EAST [47] and SegLink [29] on Total-Text and CTW1500. The quantitative
results of different methods on these two datasets are shown in Table 1.

The superior performances of our method on Total-Text and CTW1500 verify
that the proposed representation can handle well curved text in natural images.

Experiments on Incidental Scene Text (ICDAR 2015). Fine-tuning on
ICDAR 2015 stops at about 30k iterations. In testing, all images are resized to
1280 × 768. Ttr, Ttcl are set to (0.4, 0.9). For the consideration that images in
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Table 1. Quantitative results of different methods evaluated on Total-Text and
CTW1500. Note that EAST and SegLink were not fine-tuned on Total-Text. There-
fore their results are included only for reference. Comparative results on CTW1500 are
obtained from [43].

Datasets Total-text CTW1500

Method Precision Recall F-measure Precision Recall F-measure

SegLink [29] 30.3 23.8 26.7 42.3 40.0 40.8

EAST [47] 50.0 36.2 42.0 78.7 49.1 60.4

DeconvNet [25] 33.0 40.0 36.0 - - -

DMPNet [20] - - - 69.9 56.0 62.2

CTD [43] - - - 74.3 65.2 69.5

CTD+TLOC [43] - - - 77.4 69.8 73.4

TextSnake 82.7 74.5 78.4 67.9 85.3 75.6

ICDAR 2015 contains many unlabeled small texts, predicted rectangles with the
shorter side less than 10 pixels or the area less than 300 are filtered out.

The quantitative results of different methods on ICDAR 2015 are shown in
Table 2. With only single-scale testing, our method outperforms most competi-
tors (including those evaluated in multi-scale). This demonstrates that the pro-
posed representation TextSnake is general and can be readily applied to multi-
oriented text in complex scenarios.

Experiments on Long Straight Text Lines (MSRA-TD500). Fine-tuning
on MSRA-TD500 stops at about 10k iterations. Thresholds for Ttr, Ttcl are
(0.4, 0.6). In testing, all images are resized to 1280 × 768. Results are shown in
Table 2. The F-measure (78.3%) of the proposed method is higher than that of
the other methods.

4.5 Analyses and Discussions

Precise Description of Text Instances. What distinguishes our method from
others is its ability to predict a precise description of the shape and course of
text instances(see Fig. 8).

We attribute such ability to the TCL mechanism. Text center line can be
seen as a kind of skeletons that prop up the text instance, and geo-attributes
providing more details. Text, as a form of written language, can be seen as a
stream of signals mapped onto 2D surfaces. Naturally, it should follows a course
to extend.

Therefore we propose to predict TCL, which is much narrower than the whole
text instance. It has two advantages: (1) A slim TCL can better describe the
course and shape; (2) TCL, intuitively, does not overlaps with each other, so
that instance segmentation can be done in a very simple and straightforward
way, thus simplifying our pipeline.
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Table 2. Quantitative results of different methods on ICDAR 2015 and MSRA-TD500.
∗stands for multi-scale, †indicates that the base net of the model is not VGG16.

Datasets ICDAR 2015 MSRA-TD500 FPS

Method Precision Recall F-measure Precision Recall F-measure

Zhang et al. [46] 70.8 43.0 53.6 83.0 67.0 74.0 0.48

Yao et al. [39] 72.3 58.7 64.8 76.5 75.3 75.9 1.61

SegLink [29] 73.1 76.8 75.0 86.0 70.0 77.0 -

EAST [47] 80.5 72.8 76.4 81.7 61.6 70.2 6.52

WordSup ∗ [9] 79.3 77.0 78.2 - - - 2

EAST ∗ † [47] 83.3 78.3 80.7 87.3 67.4 76.1 13.2

He et al. ∗ † [8] 82.0 80.0 81.0 77.0 70.0 74.0 1.1

PixelLink [2] 85.5 82.0 83.7 83.0 73.2 77.8 3.0

TextSnake 84.9 80.4 82.6 83.2 73.9 78.3 1.1

Moreover, as depicted in Fig. 9, we can exploit local geometries to sketch the
structure of the text instance and transform the predicted curved text instances
into canonical form, which may largely facilitate the recognition stage.

Fig. 9. Text instances transformed to canonical form using the predicted geometries.

Generalization Ability. To further verify the generalization ability of our
method, we train and fine-tune our model on datasets without curved text and
evaluate it on the two benchmarks featuring curved text. Specifically, we fine-
tune our models on ICDAR 2015, and evaluate them on the target datasets.
The models of EAST [47], SegLink [29], and PixelLink [2] are taken as baselines,
since these two methods were also trained on ICDAR 2015.

As shown in Table 3, our method still performs well on curved text and signifi-
cantly outperforms the three strong competitors SegLink, EAST and PixelLink,
without fine-tuning on curved text. We attribute this excellent generalization
ability to the proposed flexible representation. Instead of taking text as a whole,
the representation treats text as a collection of local elements and integrates
them together to make decisions. Local attributes are kept when formed into a



32 S. Long et al.

Table 3. Comparison of cross-dataset results of different methods. The following mod-
els are fine-tuned on ICDAR 2015 and evaluated on Total-Text and CTW1500. Exper-
iments for SegLink, EAST and PixelLink are done with the open source code. The
evaluation protocol is DetEval [35], the same as Total-Text.

Datasets Total-text CTW1500

Methods Precision Recall F-measure Precision Recall F-measure

SegLink [29] 35.6 33.2 34.4 33.0 2.4 30.5

EAST [47] 49.0 43.1 45.9 46.7 37.2 41.4

PixelLink [2] 53.5 52.7 53.1 50.6 42.8 46.4

TextSnake 61.5 67.9 64.6 65.4 63.4 64.4

whole. Besides, they are independent of each other. Therefore, the final predic-
tions of our method can retain most information of the shape and course of the
text. We believe that this is the main reason for the capacity of the proposed
text detection algorithm in hunting text instances with various shapes.

5 Conclusion and Future Work

In this paper, we present a novel, flexible representation for describing the prop-
erties of scene text with arbitrary shapes, including horizontal, multi-oriented
and curved text instances. The proposed text detection method based upon
this representation obtains state-of-the-art or comparable performance on two
newly-released benchmarks for curved text (Total-Text and SCUT-CTW1500)
as well as two widely-used datasets (ICDAR 2015 and MSRA-TD500) in this
field, proving the effectiveness of the proposed method. As for future work, we
would explore the direction of developing an end-to-end recognition system for
text of arbitrary shapes.
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