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Abstract. State-of-the-art visual perception models for a wide range
of tasks rely on supervised pretraining. ImageNet classification is the de
facto pretraining task for these models. Yet, ImageNet is now nearly ten
years old and is by modern standards “small”. Even so, relatively little is
known about the behavior of pretraining with datasets that are multiple
orders of magnitude larger. The reasons are obvious: such datasets are
difficult to collect and annotate. In this paper, we present a unique study
of transfer learning with large convolutional networks trained to predict
hashtags on billions of social media images. Our experiments demon-
strate that training for large-scale hashtag prediction leads to excellent
results. We show improvements on several image classification and object
detection tasks, and report the highest ImageNet-1k single-crop, top-1
accuracy to date: 85.4% (97.6% top-5). We also perform extensive exper-
iments that provide novel empirical data on the relationship between
large-scale pretraining and transfer learning performance.

1 Introduction

Nearly all state-of-the-art visual perception algorithms rely on the same formula:
(1) pretrain a convolutional network on a large, manually annotated image classi-
fication dataset and (2) finetune the network on a smaller, task-specific dataset.
This formula [1–3] has been in wide use for several years and led to impres-
sive improvements on numerous tasks. Examples include: object detection [1,4],
semantic segmentation [5,6], human pose estimation [7,8], video recognition [9],
monocular depth estimation [10], and so on. In fact, it is so effective that it
would now be considered foolhardy not to use supervised pretraining.

The ImageNet dataset [11] is the de facto pretraining dataset. While there are
studies analyzing the effects of various ImageNet pretraining factors on transfer
learning (e.g., [12,13]) or the use of different datasets that are of the same size
magnitude as ImageNet (e.g., [14,15]), relatively little is known about pretraining
on datasets that are multiple orders of magnitude larger ([16,17] are the largest
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studies to date). The reasons for this are numerous: few such datasets exist,
building new datasets is labor intensive, and large computational resources are
needed to conduct experiments. Yet, given the central role of pretraining it is
important to expand our scientific knowledge in this domain.

This paper tries to address this complex issue by studying an unexplored data
regime: billions of images “labeled” in the wild with social media hashtags. This
data source has the advantage of being large and continuously growing, as well
as“free”, from an annotation perspective, because no manual labeling is required.
However, the data source also has potential disadvantages: hashtags may be too
noisy to serve as an effective supervisory signal and the image distribution might
be biased in ways that harm transfer learning. It is not a priori obvious that
training on this data will yield good transfer learning results.

The main result of this paper is that without manual dataset curation or
sophisticated data cleaning, models trained on billions of Instagram images using
thousands of distinct hashtags as labels exhibit excellent transfer learning per-
formance. For example, we observe improvements over the state-of-the-art for
image classification and object detection, where we obtain a single-crop, top-1
accuracy of 85.4% on the ImageNet-1k image-classification dataset and 45.2%
AP on the COCO object-detection dataset [18], compared to 79.8% and 43.7%,
respectively, when training (or pretraining) the same models on ImageNet-1k.
Our primary goal, however, is to contribute novel experimental data about this
previously unexplored regime. To that end, we conduct numerous experiments
that reveal interesting trends. For example, we find that “hashtag engineering”
(i.e., collecting images tagged with a specific subset of hashtags) is a promising
new direction for improving transfer learning results, that training on large-
scale hashtag data is unexpectedly robust to label noise, and that the features
learned allow a simple linear classifier to achieve state-of-the-art ImageNet-1k
top-1 accuracy of 83.6% without any finetuning (compared to 84.2% with fine-
tuning).

2 Scaling up Supervised Pretraining

In our experiments, we train standard convolutional network architectures to
predict hashtags on up to 3.5 billion public Instagram images. To make training
at this scale practical, we adopt a distributed synchronous implementation of
stochastic gradient descent with large (8k image) minibatches, following Goyal
et al. [19]. We experiment on a variety of datasets, which we describe next.

2.1 Instagram Datasets

We use a simple data collection pipeline: (1) We select a set of hashtags. (2) We
download images that are tagged with at least one of these hashtags. (3) Then,
because multiple hashtags may refer to the same underlying concept, we apply
a simple process that utilizes WordNet [20] synsets to merge some hashtags into
a single canonical form (e.g., #brownbear and #ursusarctos are merged). (4)
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Finally, for each downloaded image, we replace each hashtag with its canonical
form and discard any hashtags that were not in the selected set. The canonical
hashtags are used as labels for training and evaluation.

By varying the selected hashtags and the number of images to sample, we can
construct a variety of datasets of different sizes and visual distributions. Table 1
summarizes the datasets used in our experiments. Each dataset is named by
completing a template, role-source-I-L, that indicates its role (training, vali-
dation, testing), source (IG for Instagram, IN for ImageNet, etc.), number of
images I, and number of labels L. We use approximate image and label counts
for convenience, for example “train-IG-940M-1.5k” is an Instagram dataset for
training with ∼940e6 images and ∼1,500 labels. We omit the role and image
count when it is clear from context or not useful to present.

We design three hashtag sets for the Instagram data: (1) A ∼1.5k set with
hashtags from the standard 1,000 IN-1k synsets (each synset contains at least
one synonym, hence there are more hashtags than synsets). (2) A ∼17k set with
hashtags that are synonyms in any of the noun synsets in WordNet. And (3) an
∼8.5k set with the most frequent hashtags from the 17k set. The hashtag set
sizes are measured after merging the hashtags into their canonical forms. We
hypothesize that the first set has a visual distribution similar to IN-1k, while
the other two represent more general visual distributions covering fine-grained
visual categories. Details of how these hashtags are selected and how the merging
process works are given in supplemental material.

Table 1. Summary of image classification datasets. Each dataset is named with a
template, role-source-I-L, that indicates its role (training, validation, testing), source,
number of images I, and number of labels L.

Name template Description

train-IG-I-1.5k Instagram training set of I images and ∼1.5k hashtags from ImageNet-1k

train-IG-I-8.5k Instagram training set of I images and ∼8.5k hashtags from WordNet

train-IG-I-17k Instagram training set of I images and ∼17k hashtags from WordNet

train-IN-1M-1k The standard ImageNet-1k ILSVRC training set with 1.28M images

val-IN-50k-1k The standard ImageNet-1k ILSVRC validation set with 50k images

train-IN-I-L Extended ImageNet training set of I images and L ∈ {5k, 9k} labels

val-IN-I-L Extended ImageNet validation set of I images and L ∈ {5k, 9k} labels

train-CUB-6k-200 The Caltech-UCSD Birds-200-2011 training set

val-CUB-6k-200 The Caltech-UCSD Birds-200-2011 validation set

train-Places-1.8M-365 The Places365-Standard training set (high-resolution version)

val-Places-37k-365 The Places365-Standard validation set (high-resolution version)

train-COCO-115k-80 The standard COCO detection training set (2017 version)

val-COCO-5k-80 The standard COCO detection validation set (2017 version)

test-COCO-20k-80 The standard COCO detection test-dev set (2017 version)

Image Deduplication. When performing transfer learning, it is essential to
understand and properly address overlap between training and test sets. Overlap
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can exists because images may come from the same underlying sources (e.g.,
Wikipedia, Flickr, Google). For instance, ∼5% of the images in the val-CUB-
6k-200 set [21] also appear in train-IN-1M-1k, and 1.78% of images in val-IN-
50k-1k set are in the JFT-300M training set [17]. To address this issue, we
performed the following deduplication procedure: we compute R-MAC features
[22,23] for all candidate images using a ResNet-50 model, and use these features
to find the k = 21 nearest neighbors for each of the images in our test sets
(additional details are in the supplemental material). Subsequently, we manually
inspected all images and their nearest neighbors to identify duplicates. While
it is difficult to know the true recall of our duplicate detection system, this
procedure uncovered 150 val-IN-50k-1k (0.30%), 10 val-CUB-6k-200 (0.17%),
151 val-Places-37k-365 (0.41%), and 6 val-COCO-5k-80 (0.12%) duplicates; we
will continue to improve this system and, as a result, the estimated number of
duplicates may increase. In our results, we report the observed accuracy of our
models; in the supplemental material, we report a conservative lower bound on
accuracy by marking all duplicates as incorrect. Given the small percentage of
duplicates, they do not impact our findings.

Discussion. Our datasets have two nice properties: public visibility and sim-
plicity. By using publicly accessible images, the data used in our experiments is
visible to everyone. To see what it looks like, the images are browsable by hashtag
at https://www.instagram.com/explore/tags/ followed by a specific hashtag;
for example https://www.instagram.com/explore/tags/brownbear shows images
tagged with #brownbear. Our data is also taken from the “wild”, essentially as-
is, with minimal effort to sanitize it. This makes the dataset construction process
particularly simple and transparent.

We contrast these properties with the JFT-300M dataset [17], which is not
publicly visible and is the result of a proprietary collection process (“The [JFT-
300M] images are labeled using an algorithm that uses a complex mixture of raw
web signals, connections between web-pages and user feedback.”). Additional
details describing the collection of JFT-300M have not been publicly disclosed.

Despite our efforts to make the dataset content and collection process trans-
parent, we acknowledge that, similar to JFT-300M, it is not possible for other
research groups to know exactly which images we used nor to download them
en masse. Hence it is not possible for others to replicate our results at this time.
However, we believe that it is better if we undertake this study and share the
results with the community than to not publish the results.

2.2 ImageNet Datasets

In addition to the standard IN-1k dataset, we experiment with larger subsets
of the full ImageNet 2011 release that contains 14.2M images and 22k labels.
We construct training and validation sets that include 5k and 9k labels. For the
5k set, we use the now standard IN-5k proposed in [15] (6.6M training images).
For the 9k label set, we follow the same protocol used to construct IN-5k, which

https://www.instagram.com/explore/tags/brownbear
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involves taking the next most frequent 4k labels and all of the associated images
(10.5M training images). In all cases, we use 50 images per class for validation.

2.3 Models

We use residual networks with grouped convolutional layers, called ResNeXt
[15]. Our experiments use ResNeXt-101 32×Cd, which has 101 layers, 32 groups,
and group widths C of: 4 (8B multiply-add FLOPs, 43M parameters), 8 (16B,
88M), 16 (36B, 193M), 32 (87B, 466M), and 48 (153B, 829M). Our implemen-
tation matches [19]. We believe our results will generalize to other architectures
[24–26].

Loss Function. In contrast to ImageNet, our Instagram datasets may contain
multiple labels per image (because a user specified multiple hashtags). The aver-
age number of hashtags per image varies depending on the dataset; for instance,
train-IG-1B-17k contains ∼2 hashtags per image. Our model computes probabil-
ities over all hashtags in the vocabulary using a softmax activation and is trained
to minimize the cross-entropy between the predicted softmax distribution and
the target distribution of each image. The target is a vector with k non-zero
entries each set to 1/k corresponding to the k ≥ 1 hashtags for the image.

We have also experimented with per-hashtag sigmoid outputs and binary
logistic loss, but obtained significantly worse results. While counter-intuitive
given the multi-label data, these findings match similar observations in [16].
The successful application of sigmoid activations and logistic loss may require
sophisticated label completion techniques [17] and more hyper-parameter search.

2.4 Pretraining Details

Our models are trained by synchronous stochastic gradient descent (SGD) on 336
GPUs across 42 machines with minibatches of 8,064 images. Each GPU processes
24 images at a time and batch normalization (BN) [27] statistics are computed
on these 24 image sets. The length of the training schedule, measured in units
of number-of-images-processed (i.e., minibatch size × total SGD updates), is
determined by a heuristic: we choose two training extremes (for instance, 120
epochs on 1.2e6 images and 2 epochs on 3.5e9 images) and linearly interpo-
late the schedule between them to set the number-of-images-processed for each
experiment. Schedules for each experiment are in the supplemental material. Our
ResNeXt-101 32 × 16d networks took ∼22 days to train on 3.5B images.

To set the learning rate, we follow the linear scaling rule with gradual warm-
up described in [19]. We use a warm-up from 0.1 up to 0.1/256×8064, where 0.1
and 256 are canonical learning rate and minibatch sizes [28]. After the warm-up,
the learning rate is multiplied by 0.5 at equally spaced steps, such that the total
number of learning rate reductions is 20 over the course of training. The same
settings are used when training on ImageNet and Instagram data, except that
when training on ImageNet we use 128 GPUs in 16 machines (for a minibatch
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size of 3,072) due to the smaller dataset size and we use the standard learning
rate schedule that involves three equally spaced reductions by a factor of 0.1.
All other initialization and training details match [19] and are summarized in
the supplemental material.

3 Experiments

In our experiments, we pretrain convolutional networks for hashtag prediction
and transfer those networks to a variety of tasks. There are two established
protocols for judging the quality of a pretrained model (see [29] Sect. 3 for a
discussion). Both analyze how pretraining on a source task, e.g. IN-1k classifi-
cation, leads to gains (or losses) on a target task, e.g. bird recognition or object
detection.

Full network finetuning views pretraining as sophisticated weight initialization:
the success of pretraining is judged by its impact on the target task after fur-
ther training the network weights in a task-specific manner (i.e. finetuning). By
contrast, feature transfer uses the pretrained network as a feature extractor:
it judges the quality of the network by how effective its features are on other
tasks, without updating any of the network parameters. These protocols are two
extremes of a spectrum along which the proportion of pretrained weights that are
finetuned varies from all to none. We employ both protocols in our experiments;
at times one is more appropriate than the other.

Full network finetuning is performed by removing the hashtag-specific fully
connected classification layer from the network and replacing it with a randomly
initialized classification layer with one output per class in the target task. This
modified network is then trained using SGD with momentum. We select the
finetuning learning rate and schedule by grid search on a proper validation set
for each target task. To do this, we randomly hold out a small portion of the
training set (see supplemental material). This practice ensures that our results
on the standard validation sets are clean.

Feature transfer is performed by training an L2-regularized linear logistic
regressor on the training data for the target task using SGD. The features pro-
duced by the pretrained network are used as input into the classifier. We train
the classifier until convergence to the global optimum.

3.1 Image Classification Experiments

We evaluate Instagram pretraining by measuring classification accuracies on
three classification target tasks: ImageNet [30], CUB2011 [21], and Places365
[14]. We perform inference on 224 × 224 center-cropped images, and study the
effects of (1) the hashtag vocabulary size, (2) the training set size, (3) the amount
of noise in the hashtag targets, and (4) the hashtag sampling strategy.
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How Does the Instagram Hashtag Set Impact Accuracy? Our first
experiment varies the Instagram hashtag sets used in pretraining (1.5k, 8.5k,
vs. 17k) whilst keeping other factors constant. We compute transfer learning
results as top-1 classification accuracy on five target datasets: val-IN-1k, val-IN-
5k, val-IN-9k, val-CUB-200, val-Places-365. For baseline models, we use Ima-
geNet classification as a source task: we train networks on train-IN-1k, train-
IN-5k, and train-IN-9k, and evaluate them on the corresponding validation sets
(finetuning is not needed in these cases). For val-CUB-200 and val-Places-365,
we use train-IN-1k as the baseline source task and finetune on train-CUB-200
and train-Places-365. Full network finetuning of ResNeXt-101 32 × 16d is used
for all source-target pairs in which source and target are not the same.

Fig. 1. small Classification accuracy of ResNeXt-101 32×16d pretrained on IG-1B with
different hashtag vocabularies (purple bars) on IN-{1k, 5k, 9k} (left) and CUB2011,
Places365 (right). Baseline models (gray bars) are trained on IN-{1k, 5k, 9k} (left)
and IN-1k (right), respectively. Full network finetuning is used. Higher is better. (Color
figure online)

Figure 1 shows that pretraining for hashtag prediction substantially improves
target task accuracy: on the standard IN-1k benchmark set, a network pretrained
on nearly 1B Instagram images with 1.5k hashtags achieves a state-of-the-art
accuracy of 84.2%—an improvement of 4.6% over the same model architecture
trained on IN-1k alone and a 1.5% boost over the prior state-of-the-art [31],
which uses an optimized network architecture. The performance improvements
due to Instagram pretraining vary between ImageNet tasks: on the 1k class task,
the model pretrained with the IN-1k-aligned 1.5k hashtag set outperforms source
networks trained on larger hashtag sets. This trend reverses as the number of
target ImageNet classes increases: on 9k ImageNet target classes, the model
pretrained with 17k hashtags strongly outperforms the 1.5k hashtag model. On
the CUB2011 and Places365 target tasks, source models trained with the largest
hashtag sets perform the best, likely, because the 17k hashtags span more objects,
scenes, and fine-grained categories. These patterns are intuitive and suggest that
alignment between the source and target label sets is an important factor.
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We also show results in Fig. 1 using a larger 3.5B image set with 17k hash-
tags (dark purple bars), which performs best across all target tasks. Furthermore,
following [32], we measure the rectified classification accuracy of this model on
val-IN-1k. We present all incorrect classifications to five human annotators, ask-
ing whether or not the prediction is correct: if at least four annotators answer
this question affirmatively the model’s prediction is considered correct. Whereas
the IN-1M-1k model obtained a rectified top-1 accuracy of 87.5% on val-IN-1k,
our IG-3.5B-17k pretrained model achieved 90.4%.

Fig. 2. Classification accuracies on IN-{1k, 5k, 9k} and CUB2011 target tasks as a
function of the number of Instagram images used for pretraining for three network
architectures (colors) and two hashtag vocabularies (dashed/solid lines). Only the linear
classifier is trained on the target task. Higher is better. (Color figure online)

How Does the Pretraining Image Set Size Impact Accuracy? This
experiment studies the relationship between the number of images used in Insta-
gram pretraining and classification accuracy on the target task. For these exper-
iments, when transferring to the target task we keep the pretrained network
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weights fixed and only train a linear classifier for the target task. We make this
choice because when the number of pretraining images is small relative to the
number of target task images (e.g., 1M vs. 7M), the effect of pretraining is masked
by the large amount of finetuning data (this was not the case in the previous
experiment where the source task had orders of magnitude more images).

Figure 2 shows the classification accuracy on ImageNet validation sets (y-
axis) as a function of the number of Instagram training images (x-axis; note
the log scale) ranging from 3.5M to 3.5B images. The figure shows results for
models pretrained to predict 1.5k hashtags (dashed lines) or 17k hashtags (solid
lines) for ResNeXt-101 models with three different capacities (represented by
different colors).1 The four panels correspond to ImageNet target tasks with
three different number of classes (1k, 5k, 9k) and CUB2011.

In line with prior results [16,17], we observe near log-linear behavior: each
time we multiply the amount of training data by a factor of x, we observe a fixed
increase y in classification accuracy. While the scaling behavior is consistent
across hashtag vocabulary sizes and models, the accuracy increase y is larger for
higher-capacity networks: across all figures, the lines corresponding to ResNeXt-
101 32 × 16d networks (purple) are steeper than those corresponding to 32 ×
8d and 32 × 4d models. This result suggests that when training convolutional
networks on billions of training images, current network architectures are prone
to underfitting. We also observe log-linear scaling break down in two regimes:
(1) because accuracy is bounded, endless log-linear scaling is not possible. On
datasets like IN-1k and CUB2011 the ceiling effect necessarily creates sub-log-
linear scaling. (2) We observe a deviation from log-linear scaling in the 1B to
3.5B image regime even without apparent ceiling effects on IN-{5k, 9k}.

These plots also illustrate an interesting effect of the hashtag vocabulary on
the transfer task accuracy. On IN-1k, networks pretrained on the target-task-
aligned 1.5k hashtags outperform those trained using a larger hashtag vocabu-
lary, because the 1.5k hashtags were selected to match the ImageNet synsets.
However, as the matching between hashtag vocabulary and target classes disap-
pears and the visual variety in the transfer task increases, networks pretrained
to recognize a larger number of hashtags increasingly outperform networks pre-
trained on fewer hashtags: on the IN-9k transfer task, the difference in accuracy
between networks trained on 1.5k and those trained on 17k hashtags is ∼7%. In
the supplemental material, we analyze the effect of weakly supervised pretraining
on recognizing individual IN-1k classes in more detail.

The highest accuracies on val-IN-1k are 83.3% (source: IG-940M-1k) and
83.6% (source: IG-3.5B-17k), both with ResNeXt-101 32 × 16d. These results
are obtained by training a linear classifier on fixed features and yet are nearly
as good as full network finetuning, demonstrating the effectiveness of the fea-
ture representation learned from hashtag prediction. These results also have low
variance: we pretrained the ResNeXt-101 32 × 16d architecture of two different
random samples of 1B images and then trained linear classifiers on IN-{1k, 5k,
9k} finding a difference in top-1 accuracy of less than 0.1% in all cases.

1 The maximum number of images available for the 1.5k hashtag set is 940M.
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To test whether the above observations generalize to fine-grained classifi-
cation, we repeated the experiments on the CUB2011 dataset, and show the
results in Fig. 2, bottom right. The curves reveal that when training data is lim-
ited, the 1.5k hashtag dataset is better, but once the number of training images
surpasses ∼100M, the larger 17k hashtag dataset prevails, presumably because
it represents a more diverse visual distribution with more fine-grained concepts.

What is the Effect of Hashtag Label Noise on Model Accuracy? A
major difference between hashtag supervision and the labels provided in datasets
such as ImageNet is that hashtag supervision is inherently noisy : users may apply
hashtags that are irrelevant to the visual content of the image, or they may have
left out hashtags that would have been visually relevant [33–35]. Because an
exact characterization of this label noise is difficult, instead, we investigate the
effect of injecting additional label noise on the accuracy of our networks. To do
so, we pretrain ResNeXt-101 32 × 16d networks on a version of IG-1B-17k in
which we randomly replaced p% of the hashtags by hashtags sampled from the
marginal distribution over hashtags (excluding the tag to be replaced).

Figure 3 shows the ImageNet classification accuracy of the resulting networks
for different numbers of classes at three levels, p, of artificial label noise as well
as for a baseline in which no artificial label noise was added during pretraining.
We only train the final linear classifier on the target task, because full finetuning
may mask the damage caused by pretraining noise. The results suggest that the
networks are remarkably resilient against label noise: a noise level of p = 10%
leads to a loss of less than 1% in classification accuracy, and at p= 25% label
noise, the reduction in accuracy is around 2%. These results suggest that label
noise may be a limited issue if networks are trained on billions of images.

How Does the Sampling of Pretraining Data Impact Accuracy?
Another difference between hashtag and ImageNet supervision is that, like in
language modeling, hashtags are governed by a Zipfian distribution. Prior stud-
ies in language modeling found that resampling Zipfian distributions reduces
the impact of the head of the word distribution on the overall training loss [36].
Motivated by this work, we perform experiments in which we evaluate three
different types of data sampling in the Instagram pretraining: (1) a natural sam-
pling in which we sample images and hashtags according to the distribution by
which they appear on Instagram; (2) square-root sampling [36] in which we take
the square-root of the head of the hashtag distribution, renormalize, and sam-
ple according to the resulting distribution (due to practical considerations, our
implementation is slightly different; see supplemental material); and (3) uniform
sampling in which we sample a hashtag uniformly at random, and then sample
an image that has this hashtag associated to it uniformly at random [16]. (Aside
from this experiment, we always pretrain on Instagram data using square-root
sampling.) As before, we only train the final linear classifier on the target task.

Figure 4 displays classification accuracy as a function of the number of Ima-
geNet classes for networks that were pretrained on IG-1B-17k using the three
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Fig. 3. Classification accuracy of
ResNeXt-101 32 × 16d, pretrained on
IG-1B-17k, on val-IN-{1k, 5k, 9k} at
three levels of injected label noise. The
no-label-noise baseline is trained on
the original hashtags. Only the linear
classifier is trained on the target task.

Fig. 4. Classification accuracy of
ResNeXt-101 32 × 4d, pretrained on
IG-1B-17k, on val-IN-{1k, 5k, 9k}
for three different hashtag sampling
strategies: natural sampling, uniform
sampling, and square-root sampling.
Only the linear classifier is trained on
the target task.

sampling strategies. The results show that resampling of the hashtag distribution
is important in order to obtain good transfer to ImageNet image-classification
tasks: using uniform or square-root sampling leads to an accuracy improvement
of 5 to 6% irrespective of the number of ImageNet classes in the transfer task.
In line with prior results, the figure also shows that larger hashtag vocabularies
lead to increasing accuracy improvements as the number of target classes grows.

Fig. 5. Classification accuracy on val-IN-
1k using ResNeXt-101 32×{4, 816, 32, 48}d
with and without pretraining on the IG-
940M-1.5k dataset.

With Billions of Images, is
Transfer Learning Model-Capacity
Bound? ow, we look at what happens
when we train convolutional networks
that are substantially larger than those
typically used in recent studies (and
our experiments so far). In particu-
lar, we use IG-940M-1.5k to pretrain
ResNeXt-101 32 × 32d and ResNeXt-
101 32×48d, which have 2.4× and 4.3×
more add-mult FLOPs than ResNeXt-
101 32× 16d, respectively. Using these
“super-sized” models improves val-IN-
1k results over the 32 × 16d model
from 84.2% top-1 accuracy to 85.1%
and 85.4%, respectively (top-5 accu-
racy: from 97.2% to 97.5% and 97.6%).
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By comparison, when training from scratch on IN-1k, top-1 accuracy saturates
at around 79.6% with the 32×16d model and does not meaningfully increase by
using larger models. These results, plotted in Fig. 5, indicate that with large-scale
Instagram hashtag training, transfer-learning performance appears bottlenecked
by model capacity.

3.2 Object Detection

We have looked at target tasks that require image classification, but we are also
interested in observing if pretraining on Instagram hashtag data can improve
object detection and instance segmentation tasks by finetuning networks on the
COCO dataset [18]. We use Mask R-CNN [4,37] and experiment with ResNeXt-
101 FPN [38] backbones of three different capacities (see Fig. 6).

We compare performance on the 2017 test-dev set using several different pre-
trained networks. As baselines, we use IN-{1k, 5k} pretraining (IN-9k performs
no better than IN-5k) and compare them to IG-940M-1k and IG-1B-17k. For the
largest model (32×16d) we also include results for IG-3.5B-17k. We use standard
settings [37] for end-to-end Mask R-CNN training with one exception: for the
Instagram pretrained models we found it necessary to perform grid search for the
finetuning learning rate on the validation set. We found that models pretrained
on the Instagram data require finetuning learning rates that are ∼4–10× lower
than ImageNet pretrained models (see supplemental material). This finding illus-
trates that finetuning recipes developed for ImageNet pretrained models do not
transfer to new pretraining sets: a larger amount of pretraining data implies the
need for lower finetuning learning rates.

Figure 6 shows two interesting trends. First, we observe that when using
large amounts of pretraining data, detection is model capacity bound: with the
lowest capacity model (32×4d), the gains from larger datasets are small or even
negative, but as model capacity increases the larger pretraining datasets yield
consistent improvements. We need even larger models to take advantage of the
large-scale pretraining data. The second trend we observe comes from comparing
COCO’s default AP metric (average precision averaged over intersection-over-
union (IoU) overlap thresholds 0.5:0.95) to AP@50 (average precision computed
at IoU threshold 0.5 only). The former emphasizes precise localization while the
later allows for looser localization. We observe that the improvement over IN-
{1k, 5k} pretraining from IG-1B-1k is much larger in terms of AP@50. Thus,
the gains from Instagram pretraining may be primarily due to improved object
classification performance, rather than spatial localization performance. Further
evidence comes from experiments with keypoint detection using Mask R-CNN,
where we found that compared to IN-1k pretraining, IG-1B-1k pretraining leads
to worse results (65.3% vs. 67.0% keypoint AP). These two findings suggest that
pretraining for Instagram hashtag classification may reduce spatial localization
performance while improving classification.



Exploring the Limits of Weakly Supervised Pretraining 197

Fig. 6. Transfer to object detection and instance segmentation with Mask R-CNN. We
compare ResNeXt-101 FPN backbones of three different capacities using a variety of
source pretraining tasks. Higher is better.

4 Related Work

Our study is part of a larger body of work on training convolutional networks
on large, weakly supervised image datasets. Sun et al. [17] train convolutional
networks on the JFT-300M dataset of 300 million weakly supervised images.
Our Instagram datasets are an order of magnitude larger than JFT-300M, and
collecting them required much less manual annotation work (see Sect. 2.1). Due
to the larger training set size and the use of better network architectures, we
obtain substantially higher accuracies on transfer tasks: e.g., we obtain 85.4%
top-1 accuracy on ImageNet-1k, compared to 79.2% reported in [17].

Other prior studies [16,39] trained convolutional networks to predict words
or n-grams in comments on a collection of 100 million Flickr photos and cor-
responding comments [40]. Word or n-gram supervision is weaker than hashtag
supervision because it is less structured, as reflected in the poor transfer of fea-
tures to ImageNet reported in [16]. Other work [33,35] also trained networks to
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predict hashtags on the Flickr dataset but, unlike our study, does not investigate
transfer of the resulting networks to other tasks. In addition to Flickr hashtags,
[41] trained hard mixture of expert models on food-related Instagram hashtags;
our focus is on standard recognition networks and general hashtags. Other stud-
ies on hashtag prediction [42] do not train convolutional networks from scratch,
but train linear classifiers to predict relevant hashtags from pre-defined image
features. Several other works have trained models on web-scale image data for
other purposes, such as face recognition [43,44] and similarity search [45,46], but
to the best of our knowledge, we are the first to report the results of experiments
that involve training convolutional networks from scratch on billions of images.

5 Discussion

We have attempted to explore the limits of supervised pretraining. In addition
to producing state-of-the-art results on the ImageNet-1k benchmark task (85.4%
single-crop, top-1 accuracy; 97.6% single-crop, top-5 accuracy) and several other
vision tasks, our study has led to four important observations:

1. Our results suggests that, whilst increasing the size of the pretraining dataset
may be worthwhile, it may be at least as important to select a label space
for the source task to match that of the target task. We found that networks
trained on a hashtag vocabulary that was designed to match the classes in
the ImageNet-1k dataset outperformed those trained on twice as many images
without such careful selection of hashtags (Fig. 2, top left). This observation
paves the way for the design of “label-space engineering” approaches that
aim to optimally select (weakly supervised) label sets for a particular target
task. Such label-space engineering may be much more fruitful than further
increasing the scale of the data on which models are trained.

2. In line with prior work [16,17], we observe that current network architectures
are underfitting when trained on billions of images. Whilst such underfitting
does lead to very high robustness to noise in our hashtag targets (Fig. 3),
our results do suggest that accuracy improvements on target tasks may be
obtained by further increases of the capacity of our networks (Fig. 2). Capac-
ity may be increased, for instance, by increasing the number of layers and the
number of filters per layer of existing architectures or by mixtures-of-experts
[41] (using model parallelization across GPUs). However, it is not unthinkable
that some of the design choices that were made in current network architec-
tures are too tailored to ImageNet-1k classification, and need to be revisited
when training on billions of images with hashtag supervision.

3. Our results also underline the importance of increasing the visual variety that
we consider in our benchmark tasks. They show that the differences in the
quality of visual features become much more pronounced if these features are
evaluated on tasks with a larger visual variety. For instance, we find that the
accuracy difference between models pretrained using two different vocabular-
ies increases as the number of target classes increases (Fig. 2): if we would
have only evaluated our models on ImageNet-1k, we would have concluded
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they learned visual features of similar quality, whereas results on ImageNet-9k
show that one model learns substantially better features than the other. We
believe evaluation on more ImageNet classes is a good step towards a more
comprehensive assessment of visual recognition models.

4. Results from transferring our models to object detection, instance segmenta-
tion, and keypoint detection tasks suggestion that training for large-scale
hashtag prediction improves classification while at the same time possibly
harming localization performance. This opens a future direction of modifying
large-scale, weakly supervised pretraining tasks to better suit the localization
needs of important target tasks like detection and human pose estimation.

In closing, we reflect on the remarkable fact that training for hashtag prediction,
without the need for additional manual annotation or data cleaning, works at all.
We believe our study illustrates the potential of natural or “wild” data compared
to the traditional approach of manually designing and annotating datasets.

Acknowledgements. We thank Matthijs Douze, Aapo Kyrola, Andrew Dye, Jerry
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