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Abstract. In this paper, we propose an automatic approach to skin
lesion region segmentation based on a deep learning architecture with
multi-scale residual connections. The architecture of the proposed model
is based on UNet [22] with residual connections to maximise the learning
capability and performance of the network. The information lost in the
encoder stages due to the max-pooling layer at each level is preserved
through the multi-scale residual connections. To corroborate the efficacy
of the proposed model, extensive experiments are conducted on the ISIC
2017 challenge dataset without using any external dermatologic image
set. An extensive comparative analysis is presented with contemporary
methodologies to highlight the promising performance of the proposed
methodology.
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1 Introduction

Medical imaging is an emerging and successful tool increasingly employed in
precision medicine. It aids in making a medical decision for providing appropriate
and optimal therapies to an individual patient. Skin Cancer is one such disease
which can be identified through medical imaging using dermoscopic techniques.
There are many types of skins cancers, but we can broadly put them in to two
general categories viz., Non melanoma and Melanoma. Non-melanoma cancers
are unlikely to spread to other parts of the body but Melanoma is likely to spread
to other parts of the body and is known to be aggressive cancer. Malignant
Melanoma is a cutaneous disease. It affects the melanin producing cells known
as melanocytes. Melanoma is likely to be fatal, it has caused more deaths than
any other type of skin disease [18]. The dermoscopic acquisition of a skin image
targets segmentation into two regions: lesion and normal skin. The affected part
of an organ or a tissue due to a disease or an injury is generally termed as lesion.
Efficient and accurate segmentation of the lesion region in dermoscopic images
aids in classification of various skin diseases. Furthermore, the severity of the
diseases can be predicted through various grading techniques which result in
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early identification of a skin disease which plays a vital role in the treatment
and cure of the disease.

2 Literature

In the existing literature, several attempts have been made to develop a more
robust and efficient segmentation of the lesion region in dermoscopic and non-
dermoscopic clinical images. The methods for skin lesion segmentation can
be segregated into the following categories [8] viz., thresholding, active con-
tours, region merging methods [13] and deep learning architectures. Some meth-
ods [7,16] have been proposed on non-dermoscopic images which address skin
lesion segmentation based on colour features and textural properties respectively.
The method in [15] addresses the illumination effects and artifacts. These meth-
ods apply post processing steps for refining the segmentation results. In [19], a
deep convolutional neural network (CNN) has been proposed which combines
both local texture and global structure information to predict a label for each
pixel for segmentation of the lesion region. In [11], an automated system for
skin lesion region segmentation has been proposed to classify each pixel based
on pertinent geometrical, textural and colour features which are selected using
Ant Colony Optimization (ACO). The complementary strengths of a saliency
and Bayesian framework are applied to distinguish the shape and boundaries
of the lesion region and background in [2]. In [23], an unsupervised method-
ology based on the wavelet lattice, shift and scale parameters of wavelets has
been proposed for the segmentation of skin lesion regions in dermoscopic images.
In [6], image-wise supervised learning is proposed to derive a probabilistic map
for automated seed selection and multi-scale super-pixel based cellular automata
to acquire structural information for skin lesion region segmentation. A Guas-
sian membership function is applied for image fuzzification and to quantify each
pixel for skin segmentation [12].

Despite several methods being available for segmentation of lesion region in
images of skin diseases, there is still scope for exploring new models, which are
efficient and provide better segmentation. Thus, in this work, we propose a deep
residual architecture inspired by UNet [22] for skin lesion segmentation. The rest
of this paper is organized as follows: Sect. 3 elaborates the proposed model for
the segmentation of skin lesion region. Section 4 gives the experimental analysis
and comparative analysis. Section 5 gives a conclusion.

3 Proposed Method

The proposed methodology for automatic skin lesion region segmentation using
deep learning architecture is shown in Fig. 1. The architecture is inspired from
UNet [22] and residual network [17]. The input to the network is RGBH (Red,
Green, Blue and Hue planes respectively) of a dermoscopic image and the output
is binary segmented image with white and Black pixels representing the affected
skin and non-affected regions respectively. There are four important components
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in the proposed network. The first is construction of a multi-scale [14] image
pyramid input which makes the network scale invariant. The second is a U-shape
convolutional network, to learn a vivid hierarchical representation. The third is
to incorporates residual learning to preserve spatial and contextual information
from the preceding layers. The residual connections are used at two levels. Firstly,
at each step of the contracting (encoder) and expansive (decoder) path of the U-
Net and another short connection between the multi-scale input and expansive
(encoder) path of respective step. The information lost in the encoder stages
due to the max-pooling layer at each level is preserved through the multi-scale
residual connection. Finally, a layer with binary cross-entropy loss function based
on Jaccard index [3] is included for classification of pixels.

3.1 Multi-scale Input Layer

The proposed method has similar architecture to the methodology in [14] for con-
structing the multi-scale input by using an average pooling layer to downsample
the images naturally and construct a multi-scale input in the encoder path. These
scaled input layers are used to increase the network width of decoder path and
also as a shortcut connection to the encoder path to increase the network width
of the decoder path.

3.2 Network Structure

U-Net [22] is an efficient fully convolutional network which has been proposed for
biomedical image segmentation. The proposed architecture adopts similar archi-
tecture consisting of two blocks placed in U-shape as shown in Fig. 1. The block
with green color (Fig. 2(a)) represents the residual downsampling block and the
red color (Fig. 2(b)) represents residual upsampling block. A 2 × 2 max-pooling
operation with stride 2 for downsampling is used and at each stage number of
feature channels chosen in the proposed architecture are shown in Fig. 1. The left
side path consist of repeated residual downsampling block (henceforth referred
as resDownBlock) which are connected to the corresponding residual upsam-
pling block (henceforth referred as resUpBlock). This connection is shown with
dotted lines in Fig. 1 similar to U-Net, where the feature maps of resDownBlock
is concatenated to the corresponding resUpBlock. Along with the u-connection,
there are also short connections between the Multi-scale input at each step of the
U-Net with the corresponding resUpBlock by convolving the scaled input with
3× 3 convolution which avoids convergence on a local optimal solution and thus
helps the network to achieve good performance in complex image segmentation.

3.3 Residual-Down-sampling Block(resDownBlock)

The structure of resDownBlock consists of two 3× 3 convolutions, each followed
by a rectified linear unit (ReLU). A shortcut connection of the input layer is
added with the output feature-maps of the second convolution layer before pass-
ing to the ReLU as shown in Fig. 2(a). Batch Normalization is adopted between
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Fig. 1. Proposed architecture of Multi-Scale Residual UNet

(a) (b)

Fig. 2. (a) Details of resDownBlock, (b) Details of resUpBlock (Color figure online)

convolutional layer and rectified linear units layer as well as during the shortcut
connection. The max-pooling layer in the resDownBlock has a kernel size of 2×2
and a stride of 2. Excluding the initial resDownBlock in the encoder path all
other resDownBLocks receives the concatenated output feature-maps from the
preceding block with the scaled input.

3.4 Residual-Up-sampling Block(resUpBlock)

The structure of resUpBlock consists of two 3 × 3 convolutional layers, each fol-
lowed by a rectified linear unit (ReLU) and a shortcut connection of the input
layer is added with the output feature-maps of second convolution layer along
with the shortcut connection of the scaled input image before passing to the
ReLU as shown in Fig. 2(b). There is a Concatenation layer, which concate-
nates the upsampled feature-maps from previous block with the feature-maps of
resDownblock. According to the architecture, the resolution of resDownBlocks



A Deep Residual Architecture for Skin Lesion Segmentation 281

output should match with the resUpBlock’s input for adding the upsampling
layer in the beginning of each block. Batch Normalization is adopted between
convolutional layer and rectified linear units layer similarly as mentioned in the
above section.

4 Experiments

In order to evalute the efficacy of the proposed model, experiments have been
conducted on the ISIC 2017 Challenge [10] official dataset. The dataset con-
sists of dermoscopic images with 2000 training, 150 validation and 600 test sam-
ples respectively. The proposed network is implemented using the Keras neu-
ral network API [9] with Tensorflow backend [1] and trained on a single GPU
(GeForce GTX TITAN X, 12 GB RAM). The network is optimized by Adam
optimizer [20] with an initial learning rate of 0.001. For increasing the number
of samples during the training phase, we have used standard geometrical (linear)
data augmentation techniques, namely rotation(−45◦ to +45◦), horizontal and
vertical flipping, translation and scaling (−10% to +10%)) of the input image.
We choose 256 × 256 square images with batch size of 4 samples. The number
of learning steps at each epoch is set to 1000. We have exploited RGB and HSI
color space model for deriving RGBH (Red, Blue, Green and Hue Channels of
dermoscopic images) as input data to the network to capture the color variations
in the data. Figure 3 presents the lesion region segmentation for few test samples
with overlay of segmentation results. The overlay consists of differentiations viz.,
blue, green and red overlays representing false negatives, true positives and false
positives respectively. It is evident that the proposed model effectively captures
the lesion region without any post-processing steps.

To evaluate the performance of the segmentation, we have use Accuracy
(AC), Jaccard Index (JA), Dice coefficient (DI), Sensitivity (SE) and Specificity
(SP). Consider βtp, βtn , βfp and βfn which represent the number of true pos-
itive, true negative, false positive and false negative respectively. All the above
mentioned metrics are computed using Eqs. (1)–(5):

Accuracy(AC) =
βtp + βtn

βtp + βtn + βfp + βfn
(1)

Sensitivity(SE) =
βtp

βtp + βfn
(2)

Dice coefficient(DI) =
2 ∗ βtp

2 ∗ βtp + βfp + βfn
(3)

Specificity(SP ) =
βtn

βtp + βfn
(4)

JaccardIndex(JA) =
βtp

βtp + βfp + βfn
(5)
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Fig. 3. The visual examples of lesion region segmentations, 1st row are test images, 2nd

row corresponding ground truth images and 3rd are output of the segmented lession
region (Color figure online)

Figure 4 presents the segmentation results of the proposed model compared to
other methods in the literature by depicting number of test samples in each bin,
where each bin in x-axis represents the Jaccard Index range, y-axis represents
number of test samples. The results of our method is presented in Table 1. From
Table 1, it is evident that the proposed method outperforms the other methods
in terms of Accuracy, Dice Coefficient and Sensitivity. The results of our method
is quite competitive for the ISIC 2017 dataset in comparison with the methods
which have shown top performance in the literature.

Table 1. Comparison of Skin Lesion Segmentation on ISIC 2017.

Method Accuracy Dice Co-efficient Jaccard Index Sensitivity Specificity

Yading Yuan [24] 0.934 0.849 0.765 0.825 0.975

Our Method 0.936 0.856 0.764 0.83 0.976

Matt Berseth [4] 0.932 0.847 0.762 0.82 0.978

popleyi [5] 0.934 0.844 0.76 0.802 0.985

Euijoon Ahn [5] 0.934 0.842 0.758 0.801 0.984

RECOD Titans [21] 0.931 0.839 0.754 0.817 0.97
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Fig. 4. Graphical representation of Jaccard Index on overall test set.

5 Conclusion

In this work, we have proposed a deep architecture for skin lesion segmentation
termed as Multi-scale residual UNet. From the results in Fig. 3, it can be observed
that the boundaries of lesion regions and the background are well separated and
differentiable. Furthermore, the proposed model uses only ≈16M parameters
when compared to other well known conventional deep architectures for various
complex applications. To further improve the performance, in our future work
visual saliency shall be explored in conjunction with deep features and post
processing methods based on Conditional Random fields.
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