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Abstract. Delineation of organs at risk (OAR) on CT images is a cru-
cial step in the planning of radiotherapy treatment. Manual delineation
is time-consuming and high interrater variability is observed within and
across radiotherapy centers. Automated delineation of OAR is fast and
can lead to more consistent treatment plans. We developed an auto-
delineation tool based on a 3D convolutional neural network (CNN)
to automatically delineate 16 OAR structures in head and neck can-
cer (HNC) patients. The CNN was trained off-line using 70 previously
collected patient datasets and implemented to be available on-line in
clinical routine practice. The tool was applied prospectively for delin-
eation of 20 consecutive new HNC cases within the department of Radi-
ation Oncology, with subsequent manual editing and approval of the
contours by the clinical expert. Validation based on the automatically
proposed and edited contours shows that the auto-delineation tool is
able to achieve highly accurate segmentation results for most OAR. As
a result, 3D delineation time is reduced to less than 19 min on aver-
age (about 1 min/structure), compared to usually 1 h or more without
auto-delineation tool.
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1 Introduction

Cancer is a major disease worldwide with head and neck cancers (HNC) among
the most common cancers in Europe [1,20]. State of the art treatment of patients
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diagnosed with HNC often involves external beam radiotherapy (RT). Treatment
planning systems (TPS) are used in radiotherapy to determine an optimal treat-
ment plan for each patient. Precise delivery of ionizing radiation to the tumor
increases probability of local tumor control while maximally sparing healthy
tissue in order to avoid treatment complications.

Accurate delineation of target volumes and OAR on the planning CT is
required to ensure proper plan and dose optimization. In clinical practice, the
delineation is performed manually by radiation oncologists (RO) based on pub-
lished guidelines and is time consuming [12]. The delineation strongly depends on
experience level, knowledge and preferences of a RO, leading to high intra- and
interobserver variability [2]. Consequently, the induced variations may affect the
final treatment plan [2,14]. Automatic delineation can improve accuracy, consis-
tency and reproducibility of contours leading to more consistent treatment plans
within and across radiotherapy centers [12,19].

Atlas-based models are widely used to automatically segment OAR in
HNC [4,12,19]. Prior knowledge is incorporated in the form of atlases, which
are registered to the target image using deformable image registration tech-
niques [12].

Recently, machine learning approaches, in particular deep learning based on
convolutional neural networks (CNN), proved their success in many computer
vision tasks such as object detection [5], semantic segmentation [11] and classifi-
cation [8,10,18] and are becoming a state-of-the-art approach in medical imaging
as well (e.g. [7,16]), including RT planning (e.g. [13]). For HNC in particular,
Ibragimov et al. [6] developed a convolutional neural network extended with
Markov random fields for segmentation of OAR in HNC patients. Men et al. [12]
published a deep deconvolutional network focusing on the auto-delineation of the
target volumes in HNC patients. Cardenas et al. [3] used convolutional neural
networks for delineation of high risk oropharyngeal target volumes.

To investigate the clinical potential of CNN-based auto-delineation, we devel-
oped and implemented such a tool and integrated it within the conventional
planning workflow within the department of Radiation Oncology of UZ Leuven.
The tool is applied on-line, i.e. results are available to the radiation oncologist
within few minutes after invoking the tool at the start of the planning procedure.
The tool generates delineations of multiple (up to 16) organs at once, includ-
ing: brainstem, spinal cord, parotid glands, submandibular glands, mandible,
oral cavity, left and right cochlea, supraglottic and glottic larynx, upper esopha-
gus and pharyngeal constrictor muscles (PCM). The auto-delineation results are
imported in the planning system and visually inspected and edited as needed
by the clinical expert. We report on our initial clinical experience with a quan-
titative and qualitative evaluation of the tool based on clinical feedback for 20
actual planning cases. Auto-delineated contours are generally well perceived by
the radiation oncologists and reduce overall delineation time drastically. Due to
the generic nature of the underlying CNN, the implementation is easily extend-
able to other organs.
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2 Materials and Methods

2.1 Data Acquisition

The dataset used for training of the CNN consist of planning CT images of
70 patients and their OAR delineations. All patients were diagnosed with a
tumor in head and neck region and received RT treatment. All CT images were
acquired using the same clinical protocol on the same CT scanner in our institute
(Somatom Sensation Open, Siemens Healthcare, Forchheim Germany). During
CT acquisition, all patients were immobilized in treatment position using a ther-
moplastic mask. The auto-delineation tool is validated on planning CT images
of 20 new HNC patients, which were consecutively acquired in clinical prac-
tice between April and May 2018. The auto-delineation tool was prospectively
applied to these new cases to assess both the performance of the underlying 3D
CNN and the impact on the RT planning workflow in daily routine clinical prac-
tice. Two patients received right parotidectomy, one patient left parotidectomy
and four patients total laryngectomy before RT treatment, which means that
the right (left) parotid resp. upper esophagus, inferior pharyngeal constrictor
muscle and larynx were surgically removed and were consequently not present
in the planning CT image of the patient.

2.2 3D Convolutional Neural Network: DeepVoxNet

A 3D convolutional neural network (DeepVoxNet) based on previous work from
Kamnitsas et al. [7], is developed to automatically segment OAR in HNC for RT
treatment planning. This end-to-end automated delineation network predicts a
class label for each voxel present in a CT image [15]. CT images are normalized
and resampled to a voxel size of 1× 1× 3 mm3 as a preprocessing step. Data
augmentation is performed by introducing Gaussian noise and randomly flip-
ping images. For computational efficiency, a patch based approach (19× 19× 13
voxels) is used in which multiple voxels are predicted at once. The network has
four inputs (instead of two in [7]) that receive subvolumes of the image at dif-
ferent resolutions. Each input is followed by 10 convolutional layers and is then
upsampled to the original resolution. The output of these four pathways are
concatenated in the feature dimension and followed by two final convolutional
layers and the classification layer. This multi-scale approach allows the network
to consider both fine details in the immediate neighborhood as more coarse infor-
mation in a wider environment when making a prediction. The parametric ReLU
is used as activation function. Adam optimizer and dropout were used during
training. As postprocessing steps, connected component analysis and smoothing
are performed using MeVisLab modules (version 2.7.1).

2.3 Implementation

The auto-delineation tool using the proposed CNN and postprocessing steps, is
deployed for testing in clinical practice within the Radiation Oncology depart-
ment of UZ Leuven. New HNC planning cases follow the automated delineation
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protocol, which is summarized in Fig. 1. A patient’s planning CT is transferred to
the Medical Image Research Center using a DICOM server (OsiriX [17]) followed
by auto-delineation of the OAR using the online auto-delineation tool running
on a GPU server. The auto-delineation tool is built using MeVisLab (version
2.7.1) and combines three different steps. First, preprocessing is performed by
normalising the CT image and resampling it to a voxel size of 1× 1× 3 mm3.
Consequently, contours of all OAR are predicted using DeepVoxNet followed by
connected component analysis and smoothing as postprocessing steps. The final
contours are transferred to the Radiation Oncology department in DICOM for-
mat and imported into the TPS (Eclipse, Varian Medical Systems, Palo Alto,
CA, USA). If necessary the structures are corrected by a junior RO and there-
after approved by a senior RO. Corrected contours are transferred back to the
Medical Image Research Center and extra clinical feedback on delineation qual-
ity and efficiency is collected. Plan and dose optimizations are performed using
the standard clinical workflow. This clinical implementation allows us to gather
feedback fast and efficiently to further improve auto-delineations of OAR.

Fig. 1. Overview of clinical implementation.

2.4 Validation Process

Both a quantitative and qualitative validation is performed to assess the per-
formance of the auto-delineation tool as well as its impact on the clinical work-
flow. Quantitative analysis is achieved using three similarity measures calculated
in 3D including: Dice similarity coefficient (DSC), Hausdorff distance (H) and
average symmetric surface distance (ASSD), which each determine the similarity
between auto-delineated structures and the approved structures. Moreover, the
RO recorded the time necessary to correct auto-delineated structures for each
patient.
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A qualitative validation is performed based on clinical assessment. The RO
classifies the 3D delineation of each structure for each patient as ‘good’, ‘ade-
quate’ or ‘insufficient’ depending on the perceived performance of the auto-
delineation and the amount of extent of the manual corrections.

3 Validation Results

3.1 Quantitative Validation

Quantitative validation results reported in DSC (%), H (mm) and ASSD (mm)
are summarized in Figs. 2, 3 and Table 1. The DSC values show diverse results
for different anatomical structures. Brainstem, mandible, oral cavity, parotid
glands, submandibular glands and spinal cord show highly accurate delineations
on average, with mandible receiving the highest average DSC of 95.9% and the
submandibular gland the lowest average DSC of 78.8%. Intraclass variations are
rather low, which means that DeepVoxNet is able to consistently delineate the
same structure. In contrast, higher intraclass variations are noticed for cochleae,
pharyngeal constrictor muscles (PCM), larynx and the upper esophagus, with
DSC values ranging from 0% to 100%. Cochleae are small structures and usually
consist of one or two slices on the planning CT, such that even small correc-
tions can have a large impact on DSC, resulting in a lower average DSC for the
cochleae. Both the left and the right cochlea were once not recognized by the net-
work and consequently not delineated, which explains the DSC value of 0%. The
delineation results for pharyngeal constrictor muscles perform approximately
the same as reported in literature [9]. Although some good auto-delineations
of PCM, glottic and supraglottic larynx are obtained, leading to DSC values
above 80%, the network fails to achieve accurate segmentation results when the
tumor is located close to the PCM, glottic and supraglottic larynx. Moreover
the transition between the PCM or glottic and supraglottic larynx are the most
challenging parts to achieve high accuracy.

The average symmetric surface distance (ASSD) is below 3 mm for all struc-
tures except for the upper esophagus (7.81 mm) and the oral cavity (10.07 mm).
The mandible, cochleae, spinal cord, brainstem and the right submandibular
gland are the structures with the least corrections, resulting in an ASSD of less
than 1 mm. Same trends are observed when evaluating Hausdorff distances. The
ASSD and H highlight the influence of volume on DSC values. Although both
cochleae reached lower average DSC with high intraclass variations, the cochleae
achieved the best performance on ASSD scores compared to other structures.

The upper esophagus shows poor results on all three similarity measures with
an average DSC of only 36.4% and Hausdorf distance of more than 3.6 cm. This
can be explained by the fact that the training set only contains delineations of
the upper part of the esophagus, hence labeled as ‘upper esophagus’ in Figs. 2
and 3. However, when correcting the auto-delineations, the RO extended the
delineation of the upper esophagus caudally for some patients due to a lower
located tumor, which explains the lower averaged similarity measures for the
structure.
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Fig. 2. DSC results of auto-delineations vs. corrected contours for various organs at
risk (left axis).

Fig. 3. ASSD for auto-delineations vs. corrected contours. Triangles represent outliers
above 25 mm (see text for explanation)
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Figure 4 visualizes correction time per patient, recorded by the RO for cor-
recting all the OAR delineations of a specific patient, with on average about
290 2D contours per patient. The average correction time recorded by the RO is
15 min, which is less than one minute for each 3D structure. The proposed auto-
delineation tool predicts 3D contours in less than 4 min using a GPU server.
This drastically decreases overall delineation time to about 19 min from approx-
imately 45–120 min, measured in our institute.

Fig. 4. Correction time recorded by the RO necessary to correct all the OAR for each
patient separately

3.2 Qualitative Validation

The auto-delineated structures are overall well perceived in clinical practice,
Fig. 5. Mandible, brainstem, cochleae and spinal cord are perceived as ‘good’ for
more than 80% of the cases, which is in line with the results from the quantitative
validation. Every organ is more classified as ‘good’ than as ‘insufficient’ except
for the upper pharyngeal constrictor muscle. The delineation of this structure
needed in general more corrections, which is also observed in the quantitative
validation. The upper esophagus however, scored remarkably well on the clinical
score although the quantitative results are rather poor. Although the esophagus
was not fully delineated, the auto-delineation of the upper part of the structure
was well perceived in clinical practice.
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Table 1. Results of auto-delineation reporting volume in ml, Average Symmetric Sur-
face Distance (ASSD) in mm, Hausdorff Distance (H) in mm and Dice Similarity Coef-
ficient (DSCD) in % for each organ seperately. The results are compared with the
largest dice similarity coefficient for auto-delineation algorithms (DSCL) and inter-
rater variability (DSCI) reported in literature in the last two columns.

Organ V (ml) H (mm) ASSD (mm) DSCD (%) DSCL (%) DSCI (%)

Brainstem 21.67 6.52 0.84 91.5 81.0 [9] 83.0 [19]

Left cochlea 0.04 1.64 0.34 75.4 69.0 [9] 37.0 [19]

Right cochlea 0.06 1.66 0.41 73.1 63.0 [9] 36.0 [19]

Upper esophagus 8.60 35.8 7.66 34.8 - 87.1 [14]

Glottic larynx 2.32 11.14 2.40 39.4 - 49.0 [19]

Mandible 42.71 6.48 0.60 95.9 89.5 [6] -

Oral cavity 83.97 23.18 10.07 83.5 - -

Supraglottic larynx 9.83 11.09 2.22 71.2 - 60.0 [19]

Left parotis 22.06 11.27 1.35 86.3 79.0 [9] 76.1 [14]

Right parotis 20.75 10.06 1.05 89.7 79.0 [9] 76.5 [14]

PharConsInf 2.72 9.62 1.98 57.9 66.0 [9] 50.0 [19]

PharConsMid 2.59 12.65 1.99 60.9 57.0 [9] 50.0 [19]

PharConsSup 4.55 14.74 2.05 46.1 36.0 [9] 44.0 [19]

Left submandibular 5.83 7.72 1.47 78.8 69.7 [6] -

Right submandibular 5.87 5.54 0.83 87.7 73.0 [6] -

Spinal cord 11.26 4.26 0.39 95.9 87.0 [6] 79.5 [14]

Fig. 5. Clinical assessment of the RO reported in percentage of 3D contours for which
segmentation performance was perceived as “good”, “adequate” or “insufficient”.
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4 Discussion and Conclusion

We developed an online auto-delineation tool for organs at risk in HNC patients
in the context of RT treatment planning. The auto-delineation tool, based on 3D
CNN (DeepVoxNet) is deployed in clinical practice to evaluate the performance
of auto-delineations and to asses the impact on the clinical workflow.

Manual delineations are sensitive to interrater variability, leading to incon-
sistent treatment plans. Dice similarity coefficients of interrater variability pub-
lished in literature are summarized in Table 1 [14,19]. A high interrater variabil-
ity is observed for smaller organs such as: cochleae, upper esophagus, supraglottic
larynx and PCM. The inter observer variability stresses the difficulty of auto-
matic delineations of the OAR. Segmentation results of organs at risk using both
atlas-based methods and deep learning, have been reported in literature [4,19]
DeepVoxNet [15] is able to provide better segmentation results for organs at risk
in head and neck patients compared to results published in literature (Table 1).
Ibragimov et al. [6] was the first to propose a convolutional neural network for
auto-delineations of OAR in HNC patients. Our results reported in DSC, tend
to exceed the results of [6].

Our initial experience shows that in general, only small corrections are neces-
sary for clinical acceptance of auto-delineated contours for most of the structures.
The largest corrections for clinical acceptance are observed for the upper esoph-
agus and glottic area while mandible needed the least corrections. Moreover the
automated workflow is less time consuming, reducing the delineation time to
19 min in total compared to 45 min–120 min if manually delineated.
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