
Fusion of Microelectrode Neuronal
Recordings and MRI Landmarks

for Automatic Atlas Fitting in Deep
Brain Stimulation Surgery
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Abstract. The deep brain stimulation (DBS) is a symptomatic treat-
ment technique used mainly for movement disorders, consisting of chronic
electrical stimulation of subcortical structures. To achieve very pre-
cise electrode implantation, which is necessary for a good clinical out-
come, many surgical teams use electrophysiological recording around the
assumed target, planned in pre-operative MRI images. In our previous
work, we developed a probabilistic model to fit a 3D anatomical atlas
of the subthalamic nucleus to the recorded microelectrode activity in
Parkinson’s disease (PD) patients. In this paper, we extend the model
to incorporate characteristic landmarks of the target nucleus, manually
annotated in pre-operative MRI data. We validate the approach on a set
of 27 exploration five-electrode trajectories from 15 PD patients. The
results show that such combined approach may lead to a vast improve-
ment in optimization reliability, while maintaining good fit to the electro-
physiology data. The combination of electrophysiology and MRI-based
data thus provides a promising approach for compensating brain shift,
occuring during the surgery and achieving accurate localization of record-
ing sites in DBS surgery.
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1 Introduction

The deep brain stimulation (DBS) is a well established treatment method for
late-stage Parkinson’s disease (PD), essential tremor, dystonia and other move-
ment disorders. It consists of surgical placement of a permanent stimulation
electrode into subcortical structures and chronic electrical stimulation using a
stimulator implanted commonly in the chest cavity. In order to achieve a high
level of symptom suppression with low side-effects, a highly accurate positioning
of the stimulation contact is necessary, yet challenging. In case of the DBS for
PD, which is the main focus of this study, the most common target – the sub-
thalamic nucleus (STN) – is around 10 mm long along its longest axis and has
a relatively low contrast in pre-operative MRI scans (see Fig. 1). Moreover, the
optimal stimulation target is even smaller and lies in the dorsolareral motory
subregion of the STN.

A typical implantation procedure starts with a pre-operative MRI scanning,
which is used for target nucleus localization and surgical planning. In order to
mitigate brain shift and other inaccuracies, occurring during the surgery, most
surgical teams then employ intra-operative microelectrode recording (MER) of
electrophysiological activity in the vicinity of the planned target, using typically
up to five parallel microelectrodes. In clinical practice, the individual MER sig-
nals are evaluated manually by a neurologist and the target nucleus is identified
based on a characteristic firing pattern.

Over previous years, researchers have suggested several automatic classifica-
tion methods for the MER signals, based most commonly on signal power and
spectral properties of the MER, some of which got recently included into clini-
cal software tools for microexploration [1,2]. Despite the apparent benefits these
methods may have for implantation efficiency, they provide no spatial mapping of
the electrophysiological findings or explicit MER localization within the nucleus,
necessary for both clinical and research applications.

In our recent study [3], we presented a probabilistic model, which allows map-
ping of an anatomical STN atlas to the recorded multi-electrode MER directly
and thus provides MER classification and localization at the same time. However,
due to the inherent anisotropy and low spatial distribution of the MER (we used
a common “Ben-gun” setting with 5 parallel MER trajectories, spaced 2 mm
apart in a cruciform configuration, with signals recorded at steps of 0.5 mm),
the MER data provide accurate information about size of the STN along the
axis of the electrodes around the planned target but provide substantially less
information about the shape of the STN in other anatomical directions.

In this paper, we investigate the possibilities of fusion of our previous model
with additional information obtained from the pre-operative MRI imagery, by
combining atlas rotation and scaling based on pre-operative MRI landmarks
with additional position refinement and brain shift estimation using the MER
data. We validate the properties of the extended models on a set of 27 multi-
electrode trajectories from 15 PD patients. As both approaches are not without
limitations, we also outline the possibility to perform a complete fusion of MRI
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and MER data to estimate the patient-specific stn shape, as well as the brain
shift directly at the same time.

Fig. 1. Illustration of STN size and contrast in an axial slice of pre-operative
T2-weighted MRI image: STN contour (red, right hemisphere) and characteristic
hypointensity (green circle, left hemisphere) (Color figure online)

2 Methods

2.1 Common Definitions

Throughout this text, we use transformation vector r with 9 degrees of freedom
to transform a 3D surface-based atlas into patient-specific coordinates.

r = [t, s,γ], (1)

where t = [tx, ty, tz] is the translation, s = [sx, sy, sz] scaling and γ = [γx, γy, γz]
rotation along/around the x (medial → lateral), y (posterior → anterior) and z
(ventral → dorsal) axis. We use the 3D STN atlas from [4] in a form of standard
3D triangular mesh but any surface-based STN atlas can be used as well. As
a reference, we use a set of 12 characteristic STN landmark points (plus the
anterior and posterior commissure: AC and PC) as in [5], which were identified
by an experienced neurologist on the atlas, as well as on pre-operative MRI data
of each patient.

The MER recordings are represented in the feature vector x = {x1, ..., xN},
recorded at corresponding spatial locations L = {l1, ..., lN }. The vector x con-
sists of a single feature, the normalized signal root-mean-square of the whole
MER signal (NRMS) as in [6]. For the purposes of validation, we use manual
annotation of each MER signal as STN or non-STN, done by an experienced
neurologist during the surgery.
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2.2 Imaging-Only Method (allPoints)

As a reference, we use a method based solely on pre-operative MRI data and
STN landmark points annotated therein, the allPoints. This method uses 12
characteristic landmarks on the STN boundaries, defined previously in [5] and
coordinates of the anterior and posterior commissure. The method then finds
a full 9-DOF transformation to minimize the least-square distance between the
characteristic points on the atlas and in given patient’s manually annotated
MRI data.

2.3 Basic Electrophysiology-Only Model (nrmsCon)

This model forms the basis for the extended models below and has been presented
in our previous paper [3]. Simply put, the model shifts, scales and rotates and
the 3D atlas around the MER recording sites in a way that the high NRMS
values are encapsulated in the STN atlas volume and the low NRMS values are
excluded (owing to the higher neuron density and thus higher NRMS values
inside of the STN).

In more formal terms, model assumes different distribution of NRMS val-
ues observed inside and outside of the STN (emission probabilities, modeled
using separate log-normal distributions), and fuzzy boundaries of the STN atlas
(membership probabilities modeled using a logistic function). These parameters
form together the parameter vector Θ, which is estimated from training data. In
order to fit the atlas to MER recordings of a particular patient (NRMS values x
measured at locations L), the model finds parameters r∗, which maximize the
likelihood, defined as:

r∗ = arg max
r

L(r|{x,L},Θ) = arg max
r

p({x,L}|r,Θ) (2)

where the probability of a single observation {xi, li} being in state s is given by
the product of the emission probability and membership probabilities

p({xi, li ∈ s}|r,Θ) = p(xi|li ∈ s, r,Θ) · p(li ∈ s|r,Θ) (3)

The joint probability for a single observation is then computed as a summa-
tion over both states possible states (INside and OUT side the STN):

p({xi, li}|r,Θ) = p({xi, li ∈ IN}|r,Θ) + p({xi, li ∈ OUT}|r,Θ) (4)

To compute the joint probability of the whole observation sequence of N
MER, we näıvely assume conditional independence given model parameters and
compute the joint probability as:

p({x,L}|r,Θ) =
N∏

i=1

p({xi, li}|r,Θ) (5)

The maximum shift is constrained to ±5 mm in any direction, maximum
scaling to ±25% in each direction and rotation maximum ±15◦ around each axis,
the model is thus abbreviated nrmsCon. For more details on model structure
and fitting, please refer to the aforementioned publication [3] or the thesis [7].
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2.4 The Proposed Combined Model (nrmsBrainShift)

We introduce the following way to fuse the electrophysiology-based model with
prior information about STN size and rotation, contained in the pre-operative
MRI landmarks: In the first step, the allPoints landmark-based transformation is
used to compute atlas scaling and rotation. Subsequently, the MER-based model
described above is used to estimate the translation parameters t, and thus to
estimate the brain shift. The model is also capable of additional modification
of the scaling and rotation parameters, which are regularized. The probability
density function for all observations from Eq. (5), is modified as follows:

p({x,L}|r, Θ̂) =
N∏

i=1

p({xi, li}|r, Θ̂) ·
∏

m∈{s,γ}
p(rm|Θ̂)w, (6)

where the additional term p(rm|Θ̂) penalizes deviation from the initial allPoints
scaling and rotation, using likelihood of the normal distribution (p(rm|Θ̂) =
1/

√
2πσ2

m · exp(− (x−rm)2

2σ2
m

)), centered at the initial value of given parameter
rm, with standard deviation σm estimated from the training data and stored
in the extended parameter vector Θ̂. The exponent w represents a weight-
ing parameter, which can be used to set the trade-off between MER-based
(w → 0) and MRI-based (w → ∞) fitting. We evaluated the results for
w ∈ {0, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1}.

2.5 Performance Evaluation

In order to estimate the out of sample performance of the proposed method
and due to the relatively small sample size (in terms of whole patient sets),
we employed the leave one subject out (LOSO) procedure. In each iteration we
kept one subject’s data (maximum two 5-electrode trajectories for bi-laterally
implanted patients) for model fitting and evaluation, while all other data were
used to obtain the parameters Θ.

To compute performance metrics, we use two approaches:

(i) Machine-learning metrics where we count the number of STN MER
recordings (according to expert MER labels), correctly encapsulated in the
atlas volume at the final position (true positives), or falsely excluded from
the atlas volume (false negatives). True negatives and false positives are
computed analogously from the non-STN labeled MERs. Standard perfor-
mance measures are calculated: sensitivity, specificity and accuracy.

(ii) Evaluation of transformation parameters, obtained from the tested
model, compared to least-squares transformation of the atlas to the STN
landmark points in the pre-operative MRI data of given patient (see the
allPoints method below). Here, we assume that the pre-operative data pro-
vides accurate information about the rotation and scaling of the atlas, but
does not provide a good estimate of the translation vector t due to the
non-negligible brain-shift.
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3 Results and Discussion

3.1 Collected Data

For validation of the method, we use a dataset from 27 explorations in 15
PD patients with complete 3D information and another 9 explorations from 4
patients without information on spatial recording locations, used in the training
phase to estimate Θ (or Θ̂) only. But was excluded from validation. Altogether,
we used 175 electrode trajectories and 4538 recorded MER signals from 19 PD
patients.

Table 1. Classification results (LOSO validation-set)

Method w Accuracy Sensitivity Specificity

Mean (sd) Mean (sd) Mean (sd)

allPoints 78.7 (8.7)% 44.6 (19.8)% 92.3 (4.9)%

nrmsCon 88.0 (5.3)% 68.3 (14.6)% 95.6 (5.4)%

nrmsBrainShift 0 88.3 (5.4)% 69.8 (14.1)% 95.5 (5.6)%

0,1 86.6 (5.4)% 60.7 (15.0)% 96.6 (3.2)%

1 86.4 (5.7)% 60.6 (15.1)% 96.4 (3.4)%

Fig. 2. Evaluation of the dependency of the proposed nrmsBrainShift method on the
weighting parameter sigma, by computing Pearson’s correlation coefficient for each
transformation parameter with the reference allPoints method for varying values of
the weighting coefficient w. Note that the translation parameters tx, ty,tz are not
penalized and are thus unaffected by the value of w.
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Fig. 3. Examples of model fit using the proposed nrmsBrainShift method (left), fusing
electrophysiology data with MRI landmarks, the MRI-landmark-only allPoints method
(center) and the electrophysiology-only nrmsCon (right) on data from patient No. 5
(right STN). The final STN atlas position after fitting is shown in purple, width of the
five microelectrode trajectory cylinders denotes the NRMS value, while colors denote
manual labels: STN in yellow, non-STN in grey. MER positions inside the result-
ing model are denoted by black points, planned target by red o. The nrmsBrainShift
method provides an anatomically more reasonable fit at the cost of slightly lower accu-
racy. (Color figure online)

3.2 Fitting Results

The classification results on validation data is shown in Table 1. Although the
electrophysiology-based nrmsCon achieves much better fit to the electrophysiol-
ogy data, than the MRI-based allPoints method, there was almost no correlation
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of the scaling and rotation parameters with the reference allPoints method. As
we assume the prevailing source of inaccuracy during surgery to be due to dis-
placement, rather than deformation, we expected the only differences in terms
of shift/translation. On the presented dataset, the nrmsCon model achieved the
pre-set optimization constraints (min/max scaling and rotation) in 47 cases,
which accounted for more than 30% of the fits (and 19 out of 27 trajectories).
The method apparently leads to overfitting, providing good classification at the
cost of diverging from anatomically reasonable transformation.

In contrast, the newly proposed combined nrmsBrainShift technique achieved
only slightly lower classification accuracy, while maintaining reasonable trans-
formation - a fact illustrated also in the Fig. 2.

The impact of the weighting coefficient on divergence from anatomically rel-
evant location is illustrated in Fig. 3. While high values of w lead to a highly
constrained fit, where the only changes are in the translation parameters, low
values of w lead to more flexible fit to the MER data at the cost of lower verac-
ity of the transformation. Comparing the properties to the Table 1, it is clear
that increasing w towards one leads to only a minor drop in classification accu-
racy, and a more marked drop in sensitivity. Overall, the sensitivity is the most
problematic parameter for all methods, which is likely due to the inability of the
model to adapt more flexibly to patient-specific STN shapes.

4 Conclusion

While the previously published electrophysiology-only nrmsCon model [3]
proved electrophysiology-based fitting feasible, a subsequent detailed investiga-
tion revealed strong overfitting with too harsh model transformation, leading to
unlikely results.

Fortunately, the proposed model using the pre-operative landmarks to ini-
tialize (and potentially constrain) the fitting, achieves comparable accuracy - i.e.
ability to correctly contain STN-labeled MER locations - while maintaining
anatomically accurate scaling and rotation. The main drawback of the method
is thus in the necessity to identify the 12 landmark points in pre-operative data.
We believe, that similar probabilistic framework could be used for direct auto-
matic fusion of pre-operative MRI data, which would eliminate the need for the
manual landmark labelling and increase the ability of the model to adapt to
inter-individual differences in STN shape.

Overall, the fusion of pre-operative MRI data with electrophysiology pro-
vides a promising option for increasing accuracy of electrode localization both
intra-operatively, as well as during offline evaluation in research studies on DBS
mechanisms and STN physiology.
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