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Abstract. We present a self-supervised approach to training convo-
lutional neural networks for dense depth estimation from monocular
endoscopy data without a priori modeling of anatomy or shading. Our
method only requires sequential data from monocular endoscopic videos
and a multi-view stereo reconstruction method, e.g. structure from
motion, that supervises learning in a sparse but accurate manner. Conse-
quently, our method requires neither manual interaction, such as scaling
or labeling, nor patient CT in the training and application phases. We
demonstrate the performance of our method on sinus endoscopy data
from two patients and validate depth prediction quantitatively using
corresponding patient CT scans where we found submillimeter resid-
ual errors. (Link to the supplementary video: https://camp.lcsr.jhu.edu/
miccai-2018-demonstration-videos/)

1 Introduction

Minimally invasive procedures, such as functional endoscopic sinus surgery, typi-
cally employ surgical navigation systems to visualize critical structures that must
not be disturbed during surgery. Computer vision-based navigation systems that
rely on endoscopic video and do not introduce additional hardware are both easy
to integrate into clinical workflow and cost effective. Such systems generally rely
on the registration of preoperative data, such as CT scans, to intraoperative
endoscopic video data [1]. This registration must be highly accurate in order
to guarantee reliable performance of the navigation system. Since the accuracy
of feature-based video-CT registration methods is dependent on the quality of
reconstructions obtained from endoscopic video, it is critical for these recon-
structions to be accurate. Further, in order to solve for the additional degrees of
freedom required by deformable registration methods [2], these reconstructions
must also be dense. Our method satisfies both of these requirements (Fig. 1).
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Fig. 1. Visual comparison of reconstructions: the green dots in the endoscopic image
(left) are 2D projections of the sparse reconstruction (middle) from a recent SfM-based
method [1]. In this example, SfM only yields 67 3D points. Our method (right) produces
a dense reconstruction with 125369 3D points, shown here from approximately the same
viewpoint as the SfM reconstruction. The higher the resolution of the input image, the
greater the number of points our method is able to reconstruct. (Color figure online)

Several reconstruction methods have been explored in the past. Multi-view
stereo methods, such as Structure from Motion (SfM) [1] and Simultaneous
Localization and Mapping (SLAM) [3], are able to simultaneously reconstruct
3D structure and estimate camera poses in feature-rich scenes. However, the
paucity of features in endoscopic images of anatomy can cause these methods to
produce sparse reconstructions, which can lead to inaccurate registrations.

Mahmoud et al. [4] propose a quasi-dense SLAM method for minimally inva-
sive surgery that is able to produce dense reconstructions. However, it requires
careful manual parameter tuning. Further, the accuracy of the reconstruction is
lower than that required for sinus surgery, where low prediction errors are critical
due to the proximity of critical structures such as the brain, eyes, carotid arter-
ies, and optic nerves. Shape from Shading (SfS) based methods explicitly [5,6]
or implicitly [7] model the relationship between appearance and depth. These
methods generally require a priori modeling of the lighting conditions and sur-
face reflectance properties. Since the true lighting and reflectance conditions are
hard to model, SfS-based methods rely on simplified models that can result in
noisy and inaccurate reconstructions, e.g., in the presence of specular reflections.

Convolutional neural networks (CNNs) have shown promising results in high-
complexity problems including general scene depth estimation [8] which bene-
fits from local and global context information and multi-level representations.
However, using CNNs directly in endoscopic videos poses several challenges.
First, dense ground truth depth maps are hard to obtain inhibiting the use of
fully supervised methods. Hardware solutions, such as depth or stereo cameras,
often fail to acquire dense and accurate depth maps from endoscopic scenes
because of the non-Lambertian reflectance properties of tissues and paucity
of features. Software solutions, such as those discussed above, do not produce
reconstructions with the density or accuracy required for our application. More
recent CNN-based methods [9] use untextured endoscopy video simulations from
CT to train a fully supervised depth estimation network and rely on another
trained transcoder network to convert RGB video frames to texture indepen-
dent frames required for depth prediction. This procedure requires per endoscope
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photometric calibration and complex registration which may only work well in
narrow tube-like structures. It is unclear whether this method will work on in-
vivo images since it is only validated on two lung nodule phantoms. Second,
endoscopic images do not provide the photo-constancy that is required by unsu-
pervised methods for depth estimation of general scenes [10]. This is because
the camera and light source move jointly and, therefore, the appearance of the
same anatomy can vary substantially with different camera poses. In addition,
texture-scarce regions make it hard to provide valuable information to guide
the unsupervised network training even if the appearance was preserved across
camera poses.

In this work, we present a self-supervised approach to training deep learn-
ing models for dense depth map estimation from monocular endoscopic video
data. Our method is designed to leverage improvements in SfM- or SLAM-based
methods since our network training exploits reconstructions produced by these
methods for self-supervision. Our method also uses the estimated relative cam-
era poses to ensure depth map consistency in the training phase. While this
approach requires the intrinsic parameters of the corresponding endoscope, it
does not require any manual annotation, scaling, registration, or corresponding
CT data.

2 Methods

We introduce a method for dense depth estimation in unlabeled data by leverag-
ing established multi-view stereo reconstruction methods. Although SfM-based
methods are only able to produce sparse reconstructions from endoscopic video
data, these reconstructions and relative camera poses have been shown to be
reliable [1]. Therefore, we use these reconstructions and camera poses to super-
vise the training of our network using novel loss functions. Doing so enables us
to produce reliable dense depth maps from single endoscopic video frames.

2.1 Training Data

Our training data consists of pairs of RGB endoscopic images, 3D reconstructions
and coordinate transformations between the image pairs from SfM, and the
rectified intrinsic parameters of the endoscope. The training data generation is
completely autonomous given the endoscopic and calibration videos and could,
in principle, be computed on-the-fly with SLAM-based methods.

For each frame, we compute a sparse depth map to store the 3D reconstruc-
tions. By applying perspective geometry, 3D points can be projected onto image
planes. Since SfM- or SLAM-based methods do not consider all frames when
triangulating one particular 3D point, we only project the 3D points onto asso-
ciated image planes. bi,j = 1 indicates frame j is used to triangulate the 3D

point i and bi,j = 0 indicates otherwise.
(
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are projected 2D coordinates

of the 3D point i in frame j. The sparse depth map Y ∗
j of frame j is
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=

{
zji if bi,j = 1
0 if bi,j = 0

, where (1)

zji is the depth of 3D point i in frame j. Since the reconstruction is sparse, large
regions in Y ∗

j will not have valid depth values.
We also compute sparse soft masks to ensure that our network can be trained

with these sparse depth maps and mitigate the effect of outliers in the 3D recon-
structions. This is achieved by assigning confidence values to valid regions in
the image while masking out invalid regions. Valid regions are 2D locations on
image planes where 3D points project onto, while the remaining image comprises
invalid regions. The sparse soft mask, Wj , of frame j is defined as

Wj

[[
vj
i

]
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]]
=

{
ci if bi,j = 1
0 if bi,j = 0

, where (2)

ci is a weight related to the number of frames used to reconstruct 3D point
i and the accumulated parallax of the projected 2D locations of this point in
these frames. Intuitively, ci is proportional to the number of frames used for
triangulation and the accumulated parallax. Greater magnitudes of ci reflect
greater confidence.

2.2 Network Architecture

Our overall network architecture (Fig. 2) is a two-branch Siamese network [11]
with high modularity. For instance, our single-frame depth estimation architec-
ture can be substituted with any architecture that produces a dense depth map.
We introduce two custom layers in this network architecture.

The Depth Map Scaling Layer scales the predicted dense depth map from the
single-frame depth estimation architecture to remain consistent with the scale
of the coordinate transformation. It uses the corresponding sparse depth map as
the anchor point for scale computation.

The Depth Map Warping Layer warps a scaled dense depth map to the
coordinate frame of the other input to the Siamese network using the relative
camera pose between the two frames. We implement this layer in a differentiable
manner so that the training loss can be backpropagated. These two layers work
together to generate data that is used to enforce depth consistency, described in
the following section.

2.3 Loss Functions

In the training phase, we use two loss functions that leverage the sparse depth
annotations and relative camera poses between frames produced by SfM.

The first loss function, Scale-invariant Weighted Loss, allows the network to
train with sparse depth annotations because it uses sparse soft masks as weights
to ignore regions in the training data where no depth values are available. Given a
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Fig. 2. Network architecture: our training network (top) is a self-supervised two-branch
Siamese network that uses sparse 3D points and relative camera poses from SfM to
estimate dense depth maps from pairs of images and enforce depth consistency, respec-
tively. The soft sparse mask and sparse depth map are represented as a single blue
square with dots. During the application phase (bottom), we use the trained weights
of the single-frame depth estimation architecture (Fig. 3) to predict a dense depth map
that is accurate up to a global scale. (Color figure online)

sparse depth map, Y ∗, a predicted dense depth map, Y , and a sparse soft mask,
W , the Scale-invariant Weighted Loss is defined as

Lsparse (Y, Y ∗,W ) =
1∑
i wi

∑
i
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2
i −

1
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2
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)2

, where (3)

wi is the value of the sparse soft mask at pixel location i and di = log yi− log y∗
i

is the difference between the predicted and ground truth depth at location i [12].
The scale-invariance of this loss function is advantageous given the inherent scale
ambiguity of single-frame depth estimation. It makes the network potentially
generalizable to different patients, endoscopes, and anatomy because the net-
work simply needs to estimate correct depth ratios without having to estimate
the correct global scale. The global scale can vary considerably across differ-
ent scenarios and is almost impossible for the network to estimate solely from
endoscopic frames with no additional a priori information as input. Finally, it
makes the automatic training data generation in our method feasible. If the
depth estimation network is set up to predict global scale, the results from
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SfM- or SLAM-based methods must resolve scale ambiguity first. This requires
additional steps, e.g. registration to preoperative CT data, to recover the correct
global scale. However, registration usually requires manual initialization and,
therefore, user interaction. Alternatively, external tracking devices can record
data that reflects global scale information but are often not accurate and can
change the clinical workflow. With the Scale-invariant Weighted Loss, the auto-
matically generated 3D reconstructions and camera poses are directly usable for
network training. This allows our method to use all existing endoscopic videos
as training data in a fully automatic manner as long as the intrinsic parameters
of the corresponding endoscopes are known.

The second loss function, Depth Consistency Loss, adds spatial constraints
among frames in the training phase. By using the Scale-invariant Weighted Loss
only, the network does not gain any information from regions where no sparse
depth annotations are available and the training is prone to overfitting to the
measurement noise or outliers from SfM- or SLAM-based methods. The Depth
Consistency Loss helps gain more information and mitigate the overfitting issues.
It requires inputs from the Depth Map Scaling Layer and the Depth Map Warp-
ing Layer. We denote the predicted depth map of frame k as Zk and the warped
depth map, warped from its original coordinate frame j to the coordinate frame
k, as Žk,j . Pixels in Žk,j and Zk at location i are denoted žk,ji and zki , respec-
tively. The Depth Consistency Loss of frame j w. r. t. k is defined as

Lconsist (j, k) =
1
N

N∑
i=1

|žk,ji − zki |, where (4)

N is the number of pixels in the region where both maps have valid depths.
The network overall loss is a weighted combination of the two loss functions

defined above. Given the predicted dense depth map, Y , and sparse depth map,
Y ∗, the overall loss for network training with a single pair of training data from
frame j and k is defined as

L (j, k) = Lsparse

(
Yj , Y

∗
j ,Wj

)
+ Lsparse (Yk, Y

∗
k ,Wk)

+ ω (Lconsist (j, k) + Lconsist (k, j)) , where
(5)

ω is used to control how much weight each type of loss function is assigned.

3 Experimental Setup

Our network is trained using an NVIDIA TITAN X GPU with 12 GB memory.
We use two sinus endoscopy videos acquired using the same endoscope. Videos
were collected from anonymized and consenting patients under an IRB approved
protocol. The training data consist of 22 short video subsequences from Patient
1. We use the methods explained above to generate a total of 5040 original image
pairs. The image resolution is 464× 512, and we add random Gaussian noise to
image data as an augmentation method. We use 95% of these data for training
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Fig. 3. Single-frame depth estimation architecture: with the encoder-decoder architec-
ture and symmetric connection skipping mechanism, the network is able to extract
global information while preserving details.

and 5% for validation. The learning rate and the weight, ω, of the loss function
are empirically set to 1.0e−4 and 2.0e−4, respectively. For evaluation, we use
6 different scenes from Patient 1 and 3 scenes from Patient 2, each containing
10 test images as input to the network in the application phase. These depth
maps are converted to point clouds that were registered [13] to surface models
generated from corresponding patient CTs [14]. We use the residual error pro-
duced by the registration as our evaluation metric for the dense reconstructions.
The single-frame depth estimation architecture we use is an encoder-decoder
architecture with symmetric connection skipping (Fig. 3) [15].

4 Results and Discussion

The mean residual error produced by registrations over all reconstructions from
Patient 1 is 0.84 (±0.10) mm and over all reconstructions from Patient 2 is
0.63 (±0.19) mm. The mean residual error for Patient 1 is larger than that for
Patient 2 due to the larger anatomical complexity in the testing scenes of Patient
1. The residual errors for all 9 testing scenes are shown in Fig. 4. Since our
method relies on results from SfM or other multi-view stereo reconstruction
methods, improvements in these methods will be reflected immediately in our
dense reconstructions. However, if these methods are not able to reconstruct any
points from training videos or if the reconstructed points and estimated camera
poses have large systematic errors, our method will also fail.
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Fig. 4. Mean residual errors for all testing scenes from Patients 1 and 2.

We are able to detect and ignore frames where no reconstructions are esti-
mated as well as individual outliers in reconstructions when the number of out-
liers is small relative to the number of inliers. However, there are cases where all
reconstructed points and estimated camera poses are incorrect because of the
extreme paucity of features in certain regions of the nasal cavity and sinuses.
Currently, we rely on manual checking to ensure that 2D projections of SfM
reconstructions are locked onto visual features in order to ignore erroneous recon-
structions. However, in the future, we hope to develop an automatic method to
detect these failures. Further, with training data from a single patient and evalu-
ation on only two patients, it is unclear whether our method is able to generalize
or is overfitting to this particular endoscope. Our current results also do not allow
us to know whether or not fine-tuning the network in a patient-specific manner
will improve the accuracy of reconstructions for that particular patient. In the
future, we hope to acquire a larger dataset in order to investigate this further.

Samples from our current dense reconstruction results are shown in Fig. 5
for qualitative evaluation. There are several challenges in these examples where
the traditional SfS methods are likely to fail. For example, shadows appear in
the lower middle region of the second sample and the upper right region of
the fourth sample. There are also specular reflections from mucus in the first,
third and fourth samples. With the capability of extracting local and global con-
text information, our network recognizes these patterns and produces accurate
predictions despite their presence. Figure 1 also shows a comparison between a
sparse reconstruction obtained using SfM and a dense reconstruction obtained
using our method.
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Fig. 5. Examples of dense photometric reconstructions from Patients 1 and 2: each
column captures a different region in the nasal cavity and sinuses. The top row shows
the color endoscopic images, the middle row shows the corresponding depth images
where red maps to high values and blue to low values, and the bottom row shows the
photo-realistic 3D reconstructions produced by our method. (Color figure online)

5 Conclusion

In this work, we present an approach for dense depth estimation in monocular
endoscopy data that does not require manual annotations for training. Instead,
we self-supervise training by computing sparse annotations and enforcing depth
prediction consistency across multiple views using relative camera poses from
multi-view stereo reconstruction methods like SfM or SLAM. Consequently, our
method enables training of depth estimation networks using only endoscopic
video, without the need for CT data, manual scaling, or labeling. We show
that this approach can achieve submillimeter residual errors on sinus endoscopy
data. Since our method can generate training data automatically and directly
maps original endoscopic frames to dense depth maps with no a priori model-
ing of anatomy or shading, more unlabeled data and improvements in SfM- or
SLAM-based methods will directly benefit our approach and enable translation
to different endoscopes, patients, and anatomy. This makes our method a crit-
ical intermediate step towards accurate endoscopic surgical navigation. In the
future, we hope to evaluate our method on different endoscopes, patients, and
anatomy and compare with other methods. Substituting the single-frame depth
estimation architecture with a multi-frame architecture is also a potential future
direction to explore.
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