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Abstract. Surgical workflow analysis is an important topic of computer-
assisted intervention and phase recognition is one of its important tasks.
Features extracted from video frames by 2D convolutional networks were
proved feasible for online phase analysis in former publications. In this
paper, we propose to extract fine-level temporal features from video clips
using 3D convolutional networks (CNN) and use Long Short-Term Mem-
ory (LSTM) networks to capture coarse-level information. By combining
fine-level and coarse-level information, our proposed method outperforms
state-of-the-art online methods without using specific knowledge of surg-
eries and almost reaches the state-of-the-art offline performance.

1 Introduction

Computer-assisted surgery system (CAS) is an important topic of computer-
assisted intervention, which assists surgeons by giving some advice or guidances
in surgeries. To achieve this aim, Surgeries Workflow Analysis (SWA) is an
important task. Endoscopic surgery workflow analysis progresses rapidly these
years because this kind of surgeries are all performed under an endoscopic cam-
eras so that the videos are always available. In addition, endoscopic surgeries
need CAS more than other surgeries because of the limited field of view in endo-
scopic camera. With such limited field of view, it is very difficult for surgeons
to recognize the detailed positions of the camera, the targets, and some special
vessels or nerves.

Existing publications on SWA have described various types of features which
can be roughly divided into image-based features and signal-based features.
Signal-based features are extracted from signals like tool usage [14], some man-
ually defined surgical activities [11], and kinematic data [13]. Although signal-
based features yield good performance, it requires some additional devices (e.g.
RFID tags for tool signals and daVinci system for kinematic data), which is incon-
venient for many online situations. Since surgery videos are always available,
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image-based features can be more universal. At first, image-based features were
mainly extracted by manually designed rules. [2] used pixels value and its gra-
dients; [4] designed descriptors combining color, shape and texture information.
However, manually selected image features are suboptimal.

A better solution to this problem is selecting features by convolutional neural
networks (CNN) instead of manually. With appropriate setup, CNN can learn
highly distinctive features from training data. EndoNet [15] used AlexNet to
extract features and fed them to hybrid Hidden Markov Models (HMM) for
phase recognition. On the dataset of the EndoVis 2015 Workflow Challenge,
EndoNet performed the best. A recent method SV-RCNet [9], which combines
ResNet [7] and Long Short-Term Memory (LSTM) [6], is now the state-of-the-art
on Cholec80 dataset1 [15].

EndoNet used AlexNet as the basic network and extracted features from a sin-
gle frame. This limited the expressiveness of features because they contain no tem-
poral information. SV-RCNet used LSTM to mix shot features into clip features,
but since all convolutions were still in single shot, it ignores edges in time domain.
EndoNet used HMM for global optimization which performs well in its offline
version. However, online analysis is important in many applications, such as giv-
ing doctors some advice during surgery or in emergency situations. SV-RCNet’s
LSTM method can work online, but clips of 2s are too short to cover coarse-level
temporal features. Without prior knowledge inference (PKI) which is specific to
certain surgeries [9], its accuracy is 85.3%, only slightly higher than EndoNet’s.

We proposes an online SWA method Endo3D which is based on C3D net-
works [8] and LSTM. It extracted 3-D CNN features from a clip of video rather
than a single frame, which encodes fine-level temporal information. Besides, we
proposed a three-layer LSTM with sequences long enough to encodes coarse-level
temporal information into our prediction. Our proposed method outperforms SV-
RCNet (whose accuracy without PKI is 85.3%) in online recognition with 91.2%
online accuracy on Cholec80. In addition, it can also predict tool usage with 86%
Mean Average Precision (mAP). The main contributions of our method are:

1. Extract spatial-temporal features from surgery videos with an extended C3D
network.

2. Extract coarse-level information by LSTM which plays important role in
phase recognition.

3. Combine fine-level and coarse-level temporal information in an online mode.
4. Achieve state-of-the-art online phase recognition accuracy without using spe-

cific knowledge.
5. Achieve high accuracy in tool presence detection.

2 Methodology

2.1 Endo3D Network Architecture

Our model is trained in two steps (as Fig. 1 shows). The first step is fine tuning
process on a network derived from C3D. We use the fine tuned network to extract
1 http://camma.u-strasbg.fr/datasets.
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features and predict tool presences. In the second step, the features are arranged
into sequence which is then be fed to 3-layer LSTM to predict workflow phases.
For every time step in sequence, our model gives a prediction for phases. The two
parts of Endo3D separately introduce fine-level (for about 4.6 s) and coarse-level
(for all the past frames) temporal information into recognition, together with
spatial information.

Fig. 1. Diagram of the proposed Endo3D method.

2.2 First Part: Video Feature Extraction

The first part of our model is shown in Fig. 2. The C3D’s fc7 layer is supposed
to compute tool presence. There is a concatenation layer fc8 after fc7 which
concatenates tool layer and fc7 for phase prediction. After training, the phase
and tool layer are left away and we use fc8 as a lv = 4103 dimensional feature.
In other words, phase layers are only used as supervisions in training. The input
of our network are 16 × 112 × 112 × 3 RGB video clips and the output feature
vectors is denoted as Vf . We downsample videos from 25 fps to 2.5 fps, and
arrange contiguous 16 frames as a clip in length of 4.6 s and with a sampling
interval of 1 s. As a result, fine-level temporal texture is introduced when doing
three-dimensional convolution in this step.

This part is trained using Adam [12]. Our tool layer’s output is activated
by sigmoid function, because tool presence detection is a multi-labeled task. We
write it as Vt whose length is the number of tools denoted as nt. Vp denotes the
phase layer’s output which is activated by softmax function. For a batch of size
N , loss function can be defined as:

L = c1 × Lt + c2 × Lp + c3 × Lregu + c4 × Lw (1)
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where Tp and Tt is groundtruth of phase and tool respectively; cis are weighting
coefficients; Lw is weight decay loss and Lregu is regularization loss, which are
set to prevent overfitting; (i) means the i-th sample in the batch.

Fig. 2. The first part: C3D network of the proposed method.

2.3 Second Part: Coarse-Level Temporal Information

Since C3D captures only fine-level temporal information we introduce LSTM
to deal with long term temporal information, which is shown in Fig. 3. fc8 vec-
tors are arranged into sequences and fed to LSTM. For every time step in the
sequence, the output will only be influenced by all the past inputs, so our method
is online. Vf,t ∈ IRlv×1 denotes the value of fc8 layer of t-th timestep (the out-
puts of former networks are strided with 1 s, so the timestep of LSTM is 1 s).
The sequence is denoted as S(T ) = [Vf,1, Vf,2, ..., Vf,T ], where T denotes the
sequence at T -th second. Because LSTM networks care nothing about the length
of sequences, we use feature sequence of all past clips as input and get output of
the same number of clips. Only the output of last timestep is used as the newest
coming prediction in testing procedure.

In order to simplify training, we expand all sequences to the same length
of ns with 0 and set their labels with background class which is different from
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Fig. 3. The second part: LSTM network of the proposed method

real phases. We also introduce a mask to mark background frames. Expanded
sequence is denoted as Ŝ(T ) = [S(T ), Olv,ns−T ] and all the sequences are now
in the same shape of lv × ns. Output sequences are np × ns dimensional binary
vectors, which is denoted as Pt,p corresponding to phase p and timestep t. Mask
is also a vector denoted as Mt. Mt = 0 if timestep t is background, otherwise
Mt = 1.

The sequence learning loss can be denoted as:

Ls = − 1
N

N∑
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ns∑
t=1

np∑
p=1

M
(i)
t T

(i)
t,p log(P (i)

t,p )
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t=1

M
(i)
t

. (4)

It is a cross-entropy loss with mask to filter out background. When computing
accuracy, background results are not taken into account. Output of LSTM can
be directly used after softmax function as the confidence value without other
classifiers.

We trained the whole network from scratch. We choose 3-layer LSTM because
the number of its parameters is suitable for the difficulty of the problem and the
size of training set. If new SWA tasks are defined, the complexity of this part
can be changed.

3 Experiment

3.1 Dataset

Experiments are done on Cholec80 dataset [15], which contains 80 videos of
cholecystectomy surgeries performed by 13 surgeons. All the videos are captured
at 25 fps and are sampled to 2.5 fps. The whole set is labeled with tool presences
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and phases. Video frames are annotated with 7 phases (see Fig. 4) in 2.5 fps.
Phases are notated as P0 to P6 following the order above. For most videos,
transformations between phases follow some disciplines. Unlike Jin et al. [9], we
do not use this prior knowledges. Tools are annotated in 1 fps which also have 7
kinds2.

Fig. 4. Surgery workflow of cholecystectomy for dataset Cholec80.

For the first part, we use first 40 videos to train Endo3D feature extraction
network and the other 40 videos for validation and test. For the second part, 40
validation videos are divided to do 4-fold cross-validation, which is the same as
the division of EndoNet. In training set, there are over 200K frames with their
annotations. We arrange them into 16 frames length clips with 1 s stride and
finally get about 86K clips. The labels of clips are defined by label of the last
frame in the clip, because we want to use only past frames to extract features.
In the second step, videos are transformed into feature sequences and fit into ns,
the length of the longest one in our dataset. Only complete sequences are used
in training.

3.2 Training Parameters

Our C3D network is pretrained on sport1M dataset [10]. The fc7 and fc8 layers
are trained at the learning rate of 10−3 and initialized randomly. The layers
defined in original C3D networks are initialized using pretrained parameters and
trained at 10−4. Training for this part is setup on 2 NVIDIA GeForce 1080Ti
cards. The batch size is 24 per card. Our process is carried out using Tensorflow
[1] and training process takes 16 h for all 10K iterations. Feature extraction takes
approximately 156 ms per clip on one card.

For the last 40 videos of Cholec80 dataset, ns = 5983. The output of LSTM
network is 8D feature vector, because np = 7 for Cholec80. We trained our
2 Seven tools: Bipolar, Clipper, Grasper, Hook, Irrigator, Scissors, Specimen bag.



Endo3D: Online Workflow Analysis for Endoscopic Surgeries 103

model for 80 epochs with batch size 2 and initial learning rate 0.01. LSTM
process is carried out on Keras [3] and executed on a 1080Ti card. Training
process takes approximately 90 s for an epoch and it takes about 2 s to predict a
sequence, which is related to np. Because Keras implementation can not predict
dynamically with timesteps, for every new coming timestep, it computes from
the first timestep to the last one and only updates the new coming timestep’s
prediction. Changing some Keras’ backend code or implementing the method
with C language can accelerate this process.

3.3 Results

Phase Recognition. Phase recognition is measured by precision, recall, and
accuracy which are defined in [13]. The results are shown in Tables 1 and 2.
Results of EndoNet and SC-RCNet are cited from the reference paper [9,15].
Notations of all baselines are defined as follow:

– EndoNet SVM: EndoNet [15] without its HMM, which are the recognition
results feeding fc8 of EndoNet into SVM.

– EndoNet ON: the online phase recognition results of EndoNet [15]
– EndoNet OFF: the offline phase recognition results of EndoNet [15].
– SV-RCNet+PKI: the phase recognition result of SV-RCNet with prior

knowledge inference process [9].
– SV-RCNet: the phase recognition result of SV-RCNet without prior knowl-

edge inference process [9].
– C3D: the results of our phase layer’s output fine-tuned with only phase super-

vision.
– Endo3D: results of our phase layer’s output fine-tuned with proposed tool

and phase supervisions.
– Endo3D SVM: results of our fc8 after a SVM classifier.
– Endo3D LSTM: results of our proposed Endo3D process.

Table 1. Phase recognition results (%).

Method Precision Recall Acc.

EndoNet no-HMM 70.1 66.7 75.3

EndoNet ON 75.1 80.0 81.9

EndoNet OFF 85.7 89.1 92.2

SV-RCNet+PKI 90.6 86.2 92.4

SV-RCNet 80.7 83.5 85.3

C3D 63.5 59.9 69.9

Endo3D 66.4 67.0 74.7

Endo3D SVM 72.8 68.4 78.7

Endo3D LSTM 81.3 87.7 91.2

Table 2. Compare for every phase on
precision and recalls (%).

Phase Method (Precision/Recall)

ID EndoNet ON Endo3D LSTM

P0 90.0/85.5 82.8/99.8

P1 96.4/81.1 96.9/97.8

P2 69.8/71.2 69.5/71.0

P3 82.8/86.5 97.3/88.8

P4 55.5/75.57 92.3/91.7

P5 63.9/68.7 58.2/81.6

P6 57.5/88.9 72.1/82.5



104 W. Chen et al.

Endo3D with LSTM outperforms other online methods and is almost com-
parable to offline version of EndoNet. Only for some short phases like P0, P2
and P6, the proposed method does not perform as well as EndoNet. The result
without LSTM is comparable to EndoNet no-HMM method (which uses SVM),
and our Endo3D SVM method outperformed it. SV-RCNet without prior knowl-
edge is not as good as our method and our method can almost reach its result
with prior knowledge. C3D features perform a little worse than the proposed
method, which proves that using tool information as supervision in training and
as features in predicting phases has positive influences.

LSTM in our method and HMM in EndoNet can both improve results a
lot. According to our result, the contribution of LSTM is greater than HMM.
Theoretically, HMMs are based on transition matrix, emission matrix, whose
representation ability may be lower than LSTM. LSTM use forget gates to man-
age memories from far before, which improves performances in long sequences
learning. Besides, LSTM can be easily extended to multi-layers.

Prior Knowledge Inference (PKI) helps SV-RCNet a lot in accuracy, but we
suppose that such knowledge should be better learnt by network from videos. As
an automatic method, prior knowledge for specific dataset might not always be
available. Data-driven methods can be extended to new surgery datasets without
manually defined knowledge, which we suppose is a desirable property.

Figures 5 and 6 show the confusion matrix of 7 phases and the background for
C3D features without and with LSTM, respectively. Predictions spread on less
phases after LSTM, which shows LSTM does help filter out impossible transfor-
mations. P5 is the only phase getting worse after LSTM and it is predicted as
P3 for many cases. As Fig. 4 shows, P5 is next to P3, P4 or P6 which is the most
complex phase from the perspective of coarse-level phase transformations. Irri-
gators are mainly used in P5 which is detected with high accuracy, so from the
perspective of tool evidences, P5 is not that difficult and our prediction before
LSTM is a little higher.

Fig. 5. Confusion matrix before LSTM. Fig. 6. Confusion matrix after LSTM.



Endo3D: Online Workflow Analysis for Endoscopic Surgeries 105

Fig. 7. Average feature maps from Conv5b layer.

Figure 7 shows average feature maps extracted by the proposed C3D net-
works. The maps come from the last pooling layer of network and are aver-
age between channels. We arrange feature maps according to their groundtruth
phases as Fig. 7 shows. Eventhough it is hard to describe the detailed mean-
ings of deep features, we can find out that feature maps have different reaction
regions for different phases.

Table 3. Tool presence detection result (%).

Tool DPM EndoNet Endo3D

Bipolar 60.6 86.9 69.72

Clipper 68.4 80.1 95.12

Grasper 82.3 84.8 71.32

Hook 93.4 95.6 87.81

Irrigator 40.5 74.4 96.43

Scissors 23.4 58.6 87.33

Specimen bag 40.0 86.8 94.97

MEAN 58.4 81.0 86.1

Tool Presence Detection. The tool presence performance is measured by
mAP. Results about EndoNet are reported in [15]. Deformable Part Model
(DPM) [5], one of the most popular object detection method, is used as a baseline
for tool presence detection.

The results are shown in Table 3. The mAP for Bipolar, Grasper and Hook
of proposed method is lower than EndoNet, but for the other 4 tools its mAP is
higher. For Irrigator, Scissors and Clipper, the mAPs are higher for more than
15% points. As a result, average mAP for all tools of our proposed method is
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about 5 points higher than EndoNet. In fact, Grasper and Hook might occur in
almost all phases, because surgeons need them to move or grasp tissues. So these
two tools are less important as phase features. The proposed method is more sen-
sitive to tools like scissors and irrigator, whose occurrences are key information
for phase, because we train tool detection together with phase recognition.

4 Conclusions

In this paper, we focus on online phase recognition of endoscopic surgery videos
and propose a method to learn 3-D CNN features from video clips called Endo3D.
With the help of C3D and LSTM network, we combine fine-level and coarse-level
temporal texture together and use temporal-spatial information to recognize
phases. In addition, Endo3D uses tool and phase groundtruth to do multi-target
training. The proposed method outperformed the previous state-of-the-art on
public domain dataset without using specific knowledge.

Reducing the time consumption is the first thing to do in the future. As
an online method, the current processing time limits the output rate. Keras
consumes most of time because this implementation doesn’t support dynamical
input and output of LSTM nodes. Engineering improvements like a C version
test script will help a lot because average time to compute per node of LSTM is
less than 40 ms.
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4. Dergachyova, O., Bouget, D., Huaulmé, A., Morandi, X., Jannin, P.: Automatic

data-driven real-time segmentation and recognition of surgical workflow. IJCARS
11(6), 1–9 (2016)

5. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE T-PAMI 32(9), 1627 (2010)

6. Graves, A.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR, pp. 770–778 (2016)
8. Ji, S., Yang, M., Yu, K.: 3D convolutional neural networks for human action recog-

nition. IEEE T-PAMI 35(1), 221–231 (2012)
9. Jin, Y., et al.: SV-RCNet: workflow recognition from surgical videos using recurrent

convolutional network. IEEE T-MI 37(5), 1114–1126 (2018)

http://tensorflow.org/
http://tensorflow.org/
https://doi.org/10.1007/978-3-642-15711-0_50
https://github.com/keras-team/keras


Endo3D: Online Workflow Analysis for Endoscopic Surgeries 107

10. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Li, F.F.: Large-
scale video classification with convolutional neural networks. In: CVPR, pp. 1725–
1732 (2014)
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