
Ultrasound-Based Detection of Lung
Abnormalities Using Single Shot Detection

Convolutional Neural Networks

Sourabh Kulhare1(&), Xinliang Zheng1, Courosh Mehanian1,
Cynthia Gregory2, Meihua Zhu2, Kenton Gregory1,2, Hua Xie2,

James McAndrew Jones2, and Benjamin Wilson1

1 Intellectual Ventures Laboratory, Bellevue, WA 98007, USA
skulhare@intven.com

2 Oregon Health Sciences University, Portland, OR 97239, USA

Abstract. Ultrasound imaging can be used to identify a variety of lung
pathologies, including pneumonia, pneumothorax, pleural effusion, and acute
respiratory distress syndrome (ARDS). Ultrasound lung images of sufficient
quality are relatively easy to acquire, but can be difficult to interpret as the
relevant features are mostly non-structural and require expert interpretation. In
this work, we developed a convolutional neural network (CNN) algorithm to
identify five key lung features linked to pathological lung conditions: B-lines,
merged B-lines, lack of lung sliding, consolidation and pleural effusion. The
algorithm was trained using short ultrasound videos of in vivo swine models
with carefully controlled lung conditions. Key lung features were annotated by
expert radiologists and snonographers. Pneumothorax (absence of lung sliding)
was detected with an Inception V3 CNN using simulated M-mode images.
A single shot detection (SSD) framework was used to detect the remaining
features. Our results indicate that deep learning algorithms can successfully
detect lung abnormalities in ultrasound imagery. Computer-assisted ultrasound
interpretation can place expert-level diagnostic accuracy in the hands of low-
resource health care providers.
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1 Introduction

Ultrasound imaging is a versatile and ubiquitous imaging technology in modern
healthcare systems. Ultrasound enables skilled sonographers to diagnose a diverse set
of conditions and can guide a variety of interventions. Low cost ultrasound systems are
becoming widely available, many of which are portable and have user-friendly touch
displays. As ultrasound becomes more available and easier to operate, the limiting
factor for adoption of diagnostic ultrasound will become the lack of training in inter-
preting images rather than the cost and complexity of ultrasound hardware. In remote
settings like small health centers, combat medicine, and developing-world health care
systems, the lack of experienced radiologists and skilled sonographers is already a key
limiting factor for the effectiveness of ultrasound imaging. Recent advances in artificial

© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): POCUS 2018/BIVPCS 2018/CuRIOUS 2018/CPM 2018,
LNCS 11042, pp. 65–73, 2018.
https://doi.org/10.1007/978-3-030-01045-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01045-4_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01045-4_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01045-4_8&amp;domain=pdf


intelligence provide a potential route to improve access to ultrasound diagnostics in
remote settings. State of the art computer vision algorithms such as convolutional
neural networks have demonstrated performance matching that of humans on a variety
of image interpretation tasks [1].

In this work, we demonstrate the feasibility of computer-assisted ultrasound
diagnosis by using a CNN-based algorithm to identify abnormal pulmonary conditions.
Ultrasound in most cases does not show any structural information from within the
lung due to the high impedance contrast between the lung, which is mostly air, and the
surrounding soft tissue. Despite this, lung ultrasound has gained popularity in recent
years as a technique to detect pulmonary conditions such as pneumothorax, pneumonia,
pleural effusion, pulmonary edema, and ARDS [2, 3]. Skilled sonographers can per-
form these tasks if they have been trained to find the structural features and non-
structural artifacts correlated with disease. These include abstract features such as
A-lines, B-lines, air bronchograms, and lung sliding. Pleural line is defined in ultra-
sound as a thin echogenic line at the interface between the superficial soft tissues and
the air in the lung. A-line is a horizontal artifact indicating a normal lung surface. The
B-line is an echogenic, coherent, wedge-shaped signal with a narrow origin in the near
field of the image. Figure 1 shows examples of ultrasound lung images.

Lung ultrasound is an ideal target for computer-assisted diagnosis because imaging
the lung is relatively straightforward. The lungs are easy to locate in the thorax and
precise probe placement and orientation is not necessary to visualize key features. By
selecting a target that is relatively easy to image but complicated to interpret, we
maximize the potential benefit of the algorithm to an unskilled user.

Computer processing of ultrasound images is a well-established field. Most
methods focus on tools that assist skilled users with metrology, segmentation, or tasks
that expert operators perform inconsistently, unaided [4]. Methods for detecting B-lines
have previously been reported [5–7]. A recent survey [8] outlines deep learning work
on ultrasound lesion detection but there has been less work on consolidation and
effusion. Other examples include segmentation and measurement of muscle and bones
[9], carotid artery [10], and fetus orientation [11]. Note that while these efforts utilize
CNNs, their goal is segmentation and metrology, as opposed to computer–assisted
diagnosis.

Fig. 1. Ultrasound images from swine modeling lung pathologies that demonstrate (a) single
(single arrow) and merged B-lines (double arrow), (b) pleural effusion (box), and (c) single and
merged B-lines along with consolidation (circle).
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To show the effectiveness of CNN-based computer vision algorithms for interpreting
lung ultrasound images, this work leverages swine models with various lung patholo-
gies, imaged with a handheld ultrasound system. We include an overview of the swine
models and image acquisition and annotation procedures. We provide a description of
our algorithm and its performance on swine lung ultrasound images. Our detection
framework is based on single shot detection (SSD) [12], an efficient, state-of-the-art deep
learning system suitable for embedded devices such as smart phones and tablets.

2 Approach

2.1 Animal Model, Data Collection and Annotation

All animal studies and ultrasound imaging were performed at Oregon Health & Science
University (OHSU), following Institutional Animal Care and Use Committee (IACUC)
and Animal Care and Use Review Office (ACURO) approval. Ultrasound data from
swine lung pathology models were captured for both normal and abnormal lungs.
Normal lung features included pleural lines and A-lines. Abnormal lung features
included B-lines (single and merged), pleural effusion, pneumothorax, and consoli-
dation. Models of 3 different lung pathologies were used to generate ultrasound data
with one or more target features. For normal lung data collection (i.e. pleural line and
A-line data collection), all animals were scanned prior to induction of lung pathology.
For pneumothorax and pleural effusion ultrasound features, swine underwent percu-
taneous thoracic puncture of one hemithorax followed by injection of air and infusion
with saline into the pleural space of the other hemithorax, respectively. For consoli-
dation, single and merged B-line ultrasound features, in separate swine, acute respi-
ratory distress syndrome (ARDS) was induced by inhalation of nebulized
lipopolysaccharide. Examples of ultrasound images acquired from the animal studies
are shown in Figs. 1 and 2.

Ultrasound data were acquired using a Lumify handheld system with a C5-2
broadband curved array transducer (Philips, Bothell, WA, USA). All images were
acquired after selecting the Lumify app’s lung preset. Per the guidelines for point-of-
care lung ultrasound [13], the swine chest area was divided into eight zones. For each

Fig. 2. Reconstruction of simulated M-mode images (left) and examples images (right).
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zone, at least two 3-s videos were collected at a frame rate of approximately 20 per
second. One exam was defined as the collection of videos from all eight zones at each
time point. Therefore, at least 16 videos were collected in each exam. For each swine,
the lung pathology was induced incrementally and therefore, multiple exams were
performed on each swine. Approximately 100 exams were performed with 2,200
videos collected in total. Lung ultrasound experts annotated target features frame-by-
frame using a custom Matlab-based annotation tool.

2.2 Data Pre-processing

Input data for pre-processing consisted of either whole videos or video frames (im-
ages). Frame-level data was used to locate A-lines, single B-lines, merged B-lines,
pleural line, pleural effusion, and consolidation. Video-level data was used for repre-
sentation of pneumothorax. Raw ultrasound data collected from a curvilinear probe
take the form of a polar coordinate image. These raw data were transformed from polar
coordinates to Cartesian, which served to eliminate angular variation among B-lines
and accelerate learning. The transformed images were cropped to remove uninforma-
tive data, such as dark borders and text, resulting in images with a resolution of
801�555 pixels.

Video data were similarly transformed to Cartesian coordinates. Each transformed
video was used to generate simulated M-mode images. An M-mode image is a trace of
a vertical line (azimuthal, in the original polar image) over time. The vertical sum
threshold-based method [7] was used to detect intercostal spaces. Each intercostal
space was sampled to generate ten M-mode images at equally spaced horizontal
locations.

Ultrasound video of a healthy lung displays lung sliding, caused by the relative
movement of parietal and visceral pleura during respiration. This can readily be
observed in M-mode images, where there is a transition to a “seashore” pattern below
the pleural line. Pneumothorax prevents observation of the relative pleural motion and
causes the M-mode image to appear with uniform horizontal lines as shown in Fig. 2.

2.3 Single Shot CNN Model for Image-Based Lung Feature Detection

Single Shot Detector (SSD) is an extension of the family of regional convolutional
neural networks (R-CNNs) [14–16]. Previous object detection methods used a de-facto
two network approach, with the first network responsible for generating region pro-
posals followed by a CNN to classify each proposal into target classes. SSD is a single
network that applies small convolutional filters (detection filters) to the output feature
maps of a base network to predict object category scores and bounding box offsets. The
convolutional filters are applied to feature maps at multiple spatial scales to enable
detection of objects of various sizes. Furthermore, multiple filters representing default
bounding boxes of various aspect ratios are applied at each spatial location to detect
objects of varying shapes. This architecture renders SSD an efficient and accurate object
detection framework [17], making it a suitable choice for on-device inference tasks.
Figure 3 provides an overview of the SSD architecture. Details can be found in [12].
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Training. Each detection filter in SSD corresponds to a default bounding box at a
particular location, at a particular scale, and aspect ratio. Prior to training, each ground
truth bounding box is matched against the default bounding box with maximum Jac-
card overlap. It is also matched against any default bounding box with Jaccard overlap
greater than a threshold (usually 0.5). Thus, each ground truth box may be matched to
more than one default box, which makes the learning problem smoother. The training
objective of SSD is to minimize an overall loss that is a weighted sum of localization
loss and confidence loss. Localization loss is Smooth L1 loss between location
parameters of the predicted box and the ground truth box. Confidence loss is the
softmax over multiple class confidences for each predicted box. We used horizontal
flip, random crop, scale, and object box displacement as augmentations for training the
lung features CNN models. For training the lung sliding model, we used Gaussian blur,
random pixel intensity and contrast enhancement augmentations.

Hyperparameters. We use six single-class SSD networks as opposed to a multi-class
network because the training data is small and unbalanced. Pleural lines and A-lines are
abundant as they are normal lung features, whereas pathological lung features are rare.
Furthermore, pleural line and pleural effusion features are in close proximity, thus there
is significant overlap between their bounding boxes. Closely located features, com-
bined with an unbalanced, small training set compromises performance when trained
on multi-class SSD. We plan to address these issues in future work.

The train and test set sizes for each detection model are shown in Table 1. Feature
models were trained for 300k iterations with batch size of 24, momentum 0.9, and
initial learning rate of 0.004 (piece-wise constant learning rate that is reduced by 0.95
after every 80k iterations). We used the following aspect ratios for default boxes: 1, 2,
3, 1/2, 1/3, and 1/4. The base SSD network, Inception V2 [18], started with pre-trained
ImageNet [19] weights and was fine-tuned for lung feature detection. The training
process required 2–3 days per feature with the use of one GeForce GTX 1080Ti
graphics card.

2.4 Inception V3 Architecture for Video-Based Lung Sliding Detection

Lung sliding was detected using virtual M-mode images that were generated by the
process described in Sect. 2.2. We trained a binary classifier based on the Inception
V3 CNN architecture [18]. Compared to V2, Inception V3 reduces the number of

Fig. 3. SSD network schematic
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convolutions, limiting maximum filter size to 3 � 3, increases the depth of the network
and uses an improved feature combination technique at each inception module. We
initialized Inception V3 with pre-trained ImageNet weights and fine-tuned only the last
two classification layers with virtual M-mode images. The network was trained for 10k
iterations with batch size 100 and a constant learning rate of 0.001.

Table 1. Training statistics and testing performance

Feature Training set
(frames)

Testing set
(videos)

Sensitivity
(%)

Specificity
(%)

B-line 16,300 212 28.0 93.0
Merged B-line 14,961 337 85.0 96.5
B-line
(combined)

– 521 88.4 93.0

A-line 10,510 580 87.2 89.0
Pleural line 48,429 640 85.6 93.1
Pleural effusion 21,200 143 87.5 92.2
Consolidation 18,713 444 93.6 86.3
Pneumothorax 13,255* 35 93.0 93.0

*6,743 M-mode images with lung sliding, 6,512 M-mode images without lung sliding

Fig. 4. Sample results for SSD detection models. Detected features are highlighted by bounding
boxes and confidence scores. (A) B-line, (B) pleural line, (C) A-line, (D) pleural effusion,
(E) consolidation, (F) merged B-line.
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3 Results

We compare single class SSD performance with threshold-based detection methods
[7, 20], which are effective only for pleural line and B-line features. The SSD
framework is applicable to all lung ultrasound features and our SSD detection model
detects pleural lines with 89% accuracy compared to 67% with threshold-based
methods.

Our CNN models were evaluated against holdout test dataset acquired from two
swine. Table 1 shows the final test results and Fig. 4 shows sample outputs for features
other than lung sliding. The pleural effusion model detected effusion at all fluid vol-
umes from 50 mL to 600 mL (300 mL shown). Pleural line was the most common lung
feature, present in most ultrasound videos. Videos without pleural line were uncom-
mon, making the specificity calculation unreliable. The absence of an intercostal space
in a video was treated as a pleural line negative sample. Note that for consolidation,
pleural effusion and merged B-lines, sensitivity and specificity metrics are defined on a
per video basis, rather than per object.

The algorithm achieved at least 85% in sensitivity and specificity for all features,
with the exception of B-line sensitivity. There exists a continuum of B-line density
from single B-lines, to dense B-lines, to merged B-lines. We observed that in many
cases, dense B-lines that were not detected by the B-line detection model were detected
by the merged B-line model. We combined the B-line and merged B-line output with
the idea that the distinction between these two classes may be poorly defined. The
combined B-line model achieved 88.4% sensitivity and 93% specificity, which was
significantly better than B-lines alone. The video-based pneumothorax model had the
highest overall accuracy with 93% sensitivity and specificity.

4 Conclusions and Future Work

In summary, we demonstrated that a CNN-based computer vision algorithm can
achieve a high level of concordance with an expert’s observation of lung ultrasound
images. Seven different lung features critical for diagnosing abnormal lung conditions
were detected with greater than 85% accuracy. The algorithm in its current form would
allow an ultrasound user with limited skill to identify the abnormal lung conditions
outlined here. This work with swine models is an important step toward clinical trials
with human patients, and an important proof of concept for the ability of computer
vision algorithms to effect automated ultrasound image interpretation.

In the future, we will continue this work using clinical patient data. This will help
validate the method’s efficacy in humans while providing a sufficient diversity of
patients and quantity of data to determine patient-level diagnostic accuracy. We are
also working to implement this algorithm on tablets and smartphones. To help with
runtime on mobile devices, we are streamlining the algorithm to combine the six
parallel SSD models into a single multi-class model, while eliminating the need for
coordinate transformations, which represents the bulk of the computational time during
inference.
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