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Abstract. Currently, colon cancer diagnosis is based on manual assess-
ment of tissue samples stained with hematoxylin and eosin (H&E). This
is a high volume, time consuming, and subjective task which could be
aided by automatic cancer detection. We propose an algorithm for auto-
matic cancer detection within WSI H&E stains using a multi class colon
tissue classifier based on features extracted from 5 different color repre-
sentations. Approx. 32000 tissue patches were extracted for the classifier
from manual annotations of 9 representative colon tissue types from 74
WSI H&E stains. Colon tissue classifiers based on gray level or color fea-
tures were trained using leave-one-out forward selection. The best colon
tissue classifier was based on color texture features obtaining an average
tissue precision-recall (PR) area under the curve (AUC) of 0.886 and a
cancer PR-AUC of 0.950 on 20 validation WSI H&E stains.
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1 Introduction

Colorectal cancer is the third most common form of cancer worldwide and the
fourth most common cause of death from cancer. [1] Currently, the gold standard
colon cancer diagnosis is manual histopathological assessment of tissue structures
within biopsies or tissue samples. Whole slide image (WSI) hematoxylin and
eosin (H&E) stains allow pathologists to assess the tissue structures to detect
cancer tissue and either perform a diagnosis or determine if special stains has
to be used for further diagnosis. This is a high volume and subjective task and
subject to inter- and intra-observer variation in the diagnosis which may lead
to suboptimal treatment of the patient. [2] Digitization of WSI H&E stains has
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led to development of algorithms to aid pathologists in reducing workload and
inter- and intra-observer variation in the diagnostic work flow. Automatic can-
cer detection within WSI H&E stains can be used as first step for an automated
analysis of WSI H&E stains e.g. for prescreening of slides to detect regions with
cancer tissue and discard slides with obvious benign tissue for further analysis.
However, WSI H&E stains can contain many different benign and malignant
tissue structures with different appearances, which can complicate development
of automated cancer detection algorithms. Some benign tissue structures appear
very dissimilar to cancer tissue and can be easy to classify while others more
closely resembles cancer tissue e.g. mucosa tissue in colon. This may be illus-
trated by extracting features from manual tissue annotations of representative
colon tissue structures and be used to take into consideration during algorithm
development. Additionally, accurate tissue classification between representative
tissue structures may be used e.g. to determine degree of tumor infiltration and
tumor tissue composition within the WSI H&E stains as cancer tissue can consist
of different sub-tissue structures e.g. necrosis.

Currently, patch based methods are popular to characterize the appearance
of tissue structures and has been used to extract both gray level [6] and color
based texture and intensity features for tissue classification. [3–9] Kather et al.
[6] proposed a patch based multi class classification framework to discriminate
between eight colon tissue types to determine tumor composition in colorectal
cancer using texture features. The study showed promising results reporting a
87.4% classification accuracy between the eight tissue structures. However, no
color information was exploited in the study and it was only applied on a limited
data set of 10 independent H&E stains. However, many studies has proven that
color features are useful for tissue classification in H&E stains. [3–9] However,
the studies has only extracted features from one or two color representations
even though many color transformations exists each which may provide unique
information useful for tissue classification. Therefore, it would be interesting to
assess classification performance when utilizing all the color information available
in the images.

To the best of our knowledge, no previous studies has explored using features
from a broad range of color representations for multi class colon tissue classifi-
cation to detect colon cancer in WSI H&E stains. Therefore, the purpose of this
study was to develop a patch based framework to detect colon cancer tissue within
WSI H&E stains using a multi class colon tissue classifier trained using texture
and intensity features from five color representations from patches extracted from
manual tissue annotations of representative colon tissue structures.

2 Methods

A patch based multi class colon tissue classification framework was developed
to detect cancer tissue within WSI H&E stains. Tissue patches were extracted
from manual annotations of nine representative colon tissue structures to obtain
color based texture and intensity features from the tissue structures. The fea-
tures were used for training and validation of colon tissue classifiers designed
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to classify extracted tissue patches within a WSI H&E stain and obtain tissue
probabilities (Ptissue) of each colon tissue structure. Two multi class colon tissue
classifiers were trained based on two initial feature sets (gray level vs. color based
features) to assess feasibility in using features from many color representations
for classification between multiple tissue structures.

2.1 Image Data

A total of 94 colon WSI H&E stains from independent subjects were available
for the study (46 containing only non-neoplastic tissue and 48 adenocarcinoma).
The tissue samples were fixed in formaline prior to embedding in paraffin. The
tissue blocks were cut in 4 µm sections on a microtome at room temperature.
Specimens were stained with H&E on a Dako CoverStainer with Dako Ready-
to-Use reagents using the manufacturer’s validated protocol. The stained slides
were scanned on Phillips IntelliSite Ultra-Fast Scanner (40x; 0.25 µm2/pixel)
and were processed on the 20x resolution level. The WSI H&E stains were ran-
domly divided into a training set (38 adenocarcinoma and 36 non-neoplastic)
and validation set (10 adenocarcinoma and 10 non-neoplastic). A pathologist
annotated each specimen with ROI’s indicating gross regions containing cancer.
Additionally, manual annotations of 9 representative colon tissue types (mucosa,
muscle, fat, inflammation, red blood cells, necrosis, mucous, connective tissue,
and cancer) were obtained. The manual annotations in the validation slides were
all assessed and either approved or discarded by an experienced pathologist.

Patches with a size of 128× 128 pixels were extracted from the manual anno-
tations to obtain training and validation data from each colon tissue type. For
the patch extraction, background pixels were first identified to discard patches
without tissue information. Background pixels were defined as pixels with an
intensity below 0.05 in the S-channel from the HSV color space, which was
determined empirically. After the thresholding, background regions with an area
smaller than a cell nuclei (700 pixels selected based on manual segmentations of
representative cell nuclei within the data) was included as tissue pixels to ensure
pixels within hypochromatic cells nuclei were included as tissue information.
Finally, patches with more that 90% overlap with a manual tissue annotation
and containing at least 30% tissue pixels were selected for training and validation
data for each tissue structure. The criteria caused fat tissue to be excluded as a
tissue class as patches overlapping with fat annotations consistently contained
less than 30% tissue pixels. Each patch were labeled according to the tissue
label of the overlapping manual segmentation. The final training set consisted of
4628 Mucosa, 4015 muscle, 5368 fat, 1435 inflammation, 4691 blood cells, 4396
necrosis, 609 mucous, 4300 connective tissue, and 4606 cancer patches and the
validation set of 804 Mucosa, 722 muscle, 1189 fat, 305 inflammation, 282 blood
cells, 932 necrosis, 6 mucous, 670 connective tissue, and 1006 cancer patches.
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2.2 Feature Extraction

The feature extraction obtains features from the tissue patches for training and
validation of the colon tissue classifier. Classic texture and intensity features
were selected to assess contribution when using many color representations for
the classification. Two initial feature sets were extracted for the study for com-
parative analysis: (1) Gray level texture features consisting of the 80 features
proposed by Kather et al. [6] (2) Color texture features consisting of 7 inten-
sity histogram and 18 gray level co-occurrence matrix (GLCM) texture features
extracted from each color channel from RBG, HSV, CIELab, CMYK, and H&E
color deconvolution as well as mean RGB and RGB gradient feature images (18
feature images in total). The algorithm proposed by Ruifrok et al. [10] was used
for the color deconvolution. The intensity histogram features consisted of mean,
standard deviation, coefficient of variation, skewness, kurtosis, 3rd moment, and
entropy. The GLCM features were extracted using five distances (1, 3, 7, 15, and
20), four angles (0, 45, 90, and 135◦), and 32 gray levels. For each distance the
GCLM’s were averaged to obtain rotation invariant features. The GLCM features
proposed by Haralick et al. [11] were extracted: autocorrelation, contrast, correla-
tion, cluster prominence, cluster shade, dissimilarity, energy, entropy, homogene-
ity, maximum probability, variance, sum average, sum variance, sum entropy,
difference entropy, information measure of correlation, inverse difference, and
inverse difference moment. In total, the color feature set contained 1746 features
for each tissue patch. The feature values were z-score normalized.

2.3 Colon Tissue Classifier

The extracted features were used to train 7 colon tissue classifiers using 7 initial
feature sets: One only containing gray level texture, 5 only containing features
from each separate color representation, and one containing all color based fea-
tures. During a feature analysis it was observed that the feature distributions of
each tissue class approx. could be modeled with multivariate Gaussian distribu-
tions. Therefore, for simplicity of the study, a Bayes classifier [12] was used for
classification and to obtain Ptissue for each tissue structure. Each classifier was
trained using a leave-one-out forward selection procedure for feature reduction
to obtain the most compact and discriminative feature set for each classifier and
prevent over-fitting. In each leave-one-out, all tissue patches extracted from one
WSI H&E stain was used as validation data and all the other tissue patches
extracted from the training data slides were used for training. Precision-recall
area under the curve (PR-AUC) for each tissue class and average tissue PR-
AUC (PR-AUCavg) were used as performance metrics. PR-AUC for each tissue
class were obtained by defining tissue patches from one tissue class as true pos-
itives (TP) class and all other tissue patches as true negatives (TN). In each
iteration in the feature selection, the feature with the highest cancer PR-AUC
(PR-AUCcanc) that also improved PR-AUCavg was selected to improve cancer
classification while also improving the overall tissue classification. The feature
selection was stopped when the improvement in PR-AUCcanc or PR-AUCavg
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was less than 0.005 between iterations. For validation, the classification perfor-
mance of the trained models were assessed on tissue patches extracted from the
20 validation WSI H&E stains using the same TP and TN definitions and per-
formance metrics as in the model training. Additionally, one-vs-all PR-AUC’s
for each separate tissue type as well as one-vs-one PR-AUC between cancer and
each separate tissue type were obtained for the best colon tissue classifier to
highlight classification performance between different tissue types.

3 Results

3.1 Colon Tissue Classifier

PR-AUCcanc and PR-AUCavg obtained on the training and validation data in
each colon tissue classifier can be seen in Table 1 (PR-AUC’s obtained during
training are given in the brackets). The classifier obtained using all color fea-
tures obtained superior PR-AUCcanc compared to the other classifiers with a
PR-AUCcancer of 0.930 and 0.950 in the training and validation data, respec-
tively. Additionally, the all color feature classifier obtained high PR-AUCavg’s of
0.886 and 0.836 on the training and validation data, respectively. Therefore, the
all color feature classifier were selected as the best colon tissue classifier. PR-
AUC’s for each tissue type in the selected colon tissue classifier can be seen in
Table 2. The tissue types with the worst classification performance were mucosa,
inflammation, and mucous with PR-AUC’s below 0.9. Additionally, results of the
one-vs-one classification between patches from cancer and each separate tissue
type can be seen in Table 3. A PR-AUC above 0.95 were obtained between can-
cer and each tissue types but the lowest classification performance were obtained
between cancer and mucosa, inflammation, and necrosis patches, respectively.

Table 1. PR-AUC’s obtained for each of the 7 colon tissue classifiers. PR-AUC’s are
given as validation PR-AUC [training data PR-AUC].

Gray level
texture

RGB HSV H& E color
deconvolution

CIELab CMYK All color
features

PR- 0.699 0.867 0.838 0.885 0.843 0.837 0.886

AUCavg [0.677] [0.855] [0.823] [0.846] [0.874] [0.895] [0.836]

PR- 0.886 0.906 0.885 0.870 0.871 0.900 0.950

AUCcanc [0.836] [0.861] [0.916] [0.877] [0.836] [0.875] [0.930]

The selected features for the final colon tissue classifier consisted of two inten-
sity features (coefficient of variation (Y-channel) and skewness (Eosin-channel))
and 7 texture features (information measure of correlation (C-channel, distance
3), information measure of correlation (V-channel, distance 3), correlation (L-
channel, distance 3), information measure of correlation (RGB gradient, dis-
tance 1), correlation (Chromaticity A-channel, distance 15), difference entropy
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(H-channel, distance 3), sum variance (S-channel, distance 3)). The selected fea-
tures were obtained from 9 different color channels and channels from each of the
five color representations were represented in the selected features. This indicate
that using multiple color representations can provide additional information for
the tissue classification. The selected texture features were mainly obtained with
a GCLM distance of 1 or 3, indicating that local texture patters contained the
most significant information in discriminating between tissue structures.

Table 2. PR-AUC’s obtained for each tissue class in the selected colon tissue classifier.
PR-AUC’s are given as validation PR-AUC [training data PR-AUC].

Cancer Mucosa Muscle Blood
cells

Inflammation Necrosis Mucous Connective
tissue

PR-AUC 0.950 0.881 0.942 0.900 0.891 0.924 0.626 0.974

[0.930] [0.865] [0.936] [0.835] [0.951] [0.805] [0.410] [0.957]

Application of the selected colon tissue classifier on three representative
subimages of the H&E stains from the study can be seen in Fig. 1. First col-
umn show classification of benign colon tissue where only a few local patches
are misclassified as cancer. It can also be seen that the colon tissue classifier can
discriminate between different benign tissue structures such as red blood cells
(green), muscle (cyan), connective tissue (brown), and mucousa (magenta). The
two other columns shows subimages containing cancer tissue in the bottom to
right corner in the images. Most of the patches located in cancer tissue are cor-
rectly classified as cancer (yellow patches) and most of the benign tissue are not
classified as cancer. However, small misclassification problems between cancer
tissue and mucosa can sometimes be observed (top of Fig. 1c). Additionally, the
classifier could detect necrosis (white) within the tumor tissue in Fig. 1f.

4 Discussion

We have presented a framework for detecting cancer in WSI H&E stains of colon
tissue using a multi class colon tissue classifier based on color intensity and
texture features. The colon tissue classifier trained based on all color features
obtained the best performance with a PR-AUCavg of 0.886 and PR-AUCcancer

0.950, respectively compared to the other classifiers based only on the gray level
features proposed by Kather et al. [6] or features from separate color representa-
tions. The final feature set consisted of 9 intensity and texture features obtained
from feature images from five different color representations. The study indicate
that using information from multiple color representations can improve tissue
classification within WSI H&E stains.
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Table 3. One-vs-one PR-AUC’s obtained on the validation data between cancer and
each tissue class in the final colon tissue classifier based on all color features

Mucosa Muscle Blood
cells

Inflammation Necrosis Mucous Connective
tissue

PR-AUC 0.959 0.997 0.999 0.975 0.979 0.999 0.998

The worst one-vs-one PR-AUC’s were obtained between cancer and mucosa,
inflammation, and necrosis, respectively. This may be explained as tumor tissue
may contain inflammatory cells and necrosis which may appear within the cancer
annotations and the fact that colon adenocarcinoma originates from mucosa
making cancer appearance more similar to mucosa than the other tissues. This
confirm our hypothesis that some benign tissue structures makes accurate cancer
classification more difficult within WSI H&E stains of colon tissue compared to

Fig. 1. Application of the colon tissue classifier in three representative H&E stain
images (columns). First row show the location of the extracted patches in the original
image. Second row show a color coded image of the tissue class with the highest Ptissue

obtained within the patch (yellow = cancer, magenta = mucosa, cyan = muscle, green
= blood cells, blue = inflammation, white = necrosis, red = mucous, and brown =
connective tissue). (Color figure online)
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others. This may have to be taken into consideration to improve classification
accuracy when designing algorithms for automated cancer detection.

Stain normalization was not applied during this study as the framework was
developed on WSI H&E stains stained with a standard staining protocol which
minimized stain variation between slides. Therefore, the current framework is
only expected to be robust to small variations in stain intensity. Stain normal-
ization should therefore be applied as a preprocessing step to use the framework
on WSI H&E stains stained with other staining protocols to ensure the gener-
alized performance. Still, the results indicate that a good overall classification
accuracy can be obtained between benign tissue and cancer using data obtained
from manual tissue annotations of representative tissue structures. The frame-
work can also be used to indicate the location of cancer tissue within WSI H&E
stains which may be used for further analysis e.g. for cancer grading.
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