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Abstract. Optical coherence tomography (OCT) is commonly used to
analyze retinal layers for assessment of ocular diseases. In this paper,
we propose a method for retinal layer segmentation and quantification
of uncertainty based on Bayesian deep learning. Our method not only
performs end-to-end segmentation of retinal layers, but also gives the
pixel wise uncertainty measure of the segmentation output. The gen-
erated uncertainty map can be used to identify erroneously segmented
image regions which is useful in downstream analysis. We have validated
our method on a dataset of 1487 images obtained from 15 subjects (OCT
volumes) and compared it against the state-of-the-art segmentation algo-
rithms that does not take uncertainty into account. The proposed uncer-
tainty based segmentation method results in comparable or improved
performance, and most importantly is more robust against noise.
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1 Introduction

Optical Coherence Tomography (OCT) is a popular non-invasive imaging modal-
ity for retinal imaging. OCT provides volumetric scans of retinal layers for
the diagnosis and evaluation of different diseases such as Glaucoma and Age
regated macular degeneration (AMD). For example, [1] have shown the cor-
relation between outer retinal layer thickness and visual acuity in early AMD
patients. It has also been shown that retinal layer features can be used to predict
vision loss and progression [6].

The segmentation of retinal layers in OCT has been tackled in a number of
ways, such as dynamic programming [13], graph-based shortest path algorithms
[4], graph-based minimum s-t cut formulations [8] and level sets [3,14]. Machine-
learning based approaches have also been proposed, where the retinal layer and
boundary probability maps are detected using a trained classifier. The final seg-
mentation is then obtained by imposing a model such as active contours [20] or
minimum s-t cut framework [12] on the soft labels.
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In the past few years, Convolutional Neural Networks (CNNs) based meth-
ods such as Unet [15,17] and fully convolutional Densenet (FC-DN) [10] have
achieved remarkable performance gain in medical image and natural image
segmentation. The networks are trained end-to-end, pixels-to-pixels on seman-
tic segmentation exceeded the most state-of-the-art methods without further
machinery. [2,16] used Unet like network to perform pixelwise semantic segmen-
tation of retinal layers. In another approach, [5], used CNN and graph search
method for layer boundary classification. Once trained, these methods acts as
a black box where one has to assume that the segmentation output is accurate
which is not always the case. For example, the model will produce incorrect seg-
mentation when the test image is different from the distribution of images used
to train the model. This may happen when the model is trained using limited
number of training images. In other scenario, the model will produce inaccurate
segmentation when trained using normal images, yet pathologies are observed
in the test image or the test image is noisy. Quantification of uncertainties asso-
ciated with the segmentation output is therefore important to determine the
region of incorrect segmentation, e.g., region associated with higher uncertainty
can either be excluded from subsequent analysis or highlighted for manual atten-
tion. In another scenario, when the retinal layer segmentation map is used to
diagnose the diseases such as AMD and Glaucoma, the uncertainty map can be
used to determine the confidence of final automatic or clinical diagnosis.

Previous works have explored the uncertainty quantification in biomedical
segmentation [9], however, these approaches do not utilize the representative
power of deep learning. Recent research has shown that Bayesian probability
theory offers a mathematically grounded technique to reason about uncertainty
in deep learning models [7,11]. In this paper, we explore Bayesian fully convolu-
tional neural network for segmentation and uncertainty quantification of retinal
layers in OCT images. We experimentally demonstrate that in addition to the
uncertainty based confidence measure, our method provides improved layer seg-
mentation accuracy and robustness towards noise in the test images.

2 Methodology

We model two types of uncertainties for retinal layer segmentation; epistemic
uncertainty and aleatoric uncertainty. The epistemic uncertainty captures the
uncertainty related to the model parameters, e.g., when the model does not
take into account certain aspect of the training data. Therefore, the epistemic
uncertainty can be reduced by training the model using more images. Aleo-
retic uncertainty, on the other hand, captures the noise inherent in the images,
therefore, it cannot be reduced with additional training images. We model the
aleatoric uncertainty as an additional output variance for both deep learning
networks.

We enhance fully convolutional Densenet (FC-DN) [10] for segmentation and
uncertainty quantification of retinal layers. FC-DN is a fully convolutional neu-
ral network with several dense-blocks connected in encoder-decoder architecture



Segmentation of Retinal Layers in Optical Coherence Tomography Images 221

with skip connections across them which effectively combines coarse semantic
features with fine image details for pixel-wise semantic segmentation. Each layer
in the dense block is connected to all the preceding layers by iterative concate-
nation of previous feature maps. This allows all layers to access feature maps
from their preceding layers which encourages heavy feature reuse. As a result,
FC-DN uses less parameter and is less prone to over-fitting. The networks is then
trained using the proposed class weighted Bayesian loss function by taking into
account the output variance which is described in Sect. 2.1. Once the networks
are trained, in the test phase, we use dropout variational inference technique [7]
to compute the epistemic uncertainty which we describe in Sect. 2.2.

Let FW(X) be a FC-DN model parameterized by W which takes input image
X and produces the logit vector z for each pixel as z = FW(X). The logit vector
z consists of logits for each class as z = (z1,···zC) where C is the number of classes
i.e., number of retinal layers for segmentation. The final probability vector for a
pixel y = (y1,···yC) can be computed by applying the softmax function over the
logits as y = Softmax(z). The softmax function gives the relative probabilities
between classes, but fails to measure the model’s uncertainty.

2.1 Bayesian Fully Convolution Network

Here we present a method to convert FC-DN to output the pixelwise uncertainty
map in addition to the pixel-wise segmentation map. We name the proposed
method Bayesian FC-DN (BFC-DN). In BFC-DN, we apply 1x1 convolution
to the feature maps of last layers followed by softplus activation to output the
variance v for each pixel in addition to the logit vector z i.e., (z,v) = FW(X).
This variance gives aleatoric uncertainty of the model which the network learns
to predict during the training. In addition, we include the dropout layer before
every convolution layer which allows us to compute epistemic uncertainty which
will be described in Sect. 2.2.

The output of the model is the Gaussian distribution N (z,v). Computing
the categorical cross entropy loss over this distribution is not feasible. Therefore,
we approximated it using the monte-carlo integration. Given a set of training
images and corresponding ground truth segmentation mask, D = {Xn, Yn}Nn=1,
output logit for each sample in the mini-batch is perturbed T times with a
Gaussian noise εt ∼ N (0,v) as ẑt = z+ εt and the final pixel-wise bayesian loss
is computed as:

L(W ) = − 1
T

T∑

t=1

C∑

c=1

βc

∑

∀Yc

log yt
c (1)

where yt
c is obtained by applying softmax to the logit vector ẑt; Yc denotes

the pixels region of the cth class in the ground truth Y and the scale factor
βc = 1/|Yc| weights the contribution of each class to mitigate the class imbalances
of different OCT layers and the background by increasing the weight of under
represented classes while decreasing the effect of over represented classes. The
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proposed Bayesian loss function encourage the network to minimize the larger
losses by increasing the variance, therefore is more robust towards noise.

We train the proposed BFC-DN using the bayesian loss given by Eq. 1 for
40000 iterations. We have used mini-batch gradient descent and the Adam opti-
mizer with momentum and a batch size of 2. The learning rate is set to 10−5

which is decreased by one tenth after 10000 iterations of the training. Data
augmentation is an important step in training deep networks. We augment the
training images and corresponding label map masks through a mirror-image
reflection and random rotation within the range of [−15, 15] degrees.

2.2 Segmentation and Uncertainty Quantification

Epistemic uncertainty is generally computed by assuming distribution over the
network weights which allows the computation of distribution of class probabil-
ities rather than point estimate [18]. Such methods require optimization over
weights distribution and therefore is computationally expensive [7]. We adopt
more practical approach introduced by [7] which is based on the dropout varia-
tional inference. We train the BFC-DN with a dropout layer before every con-
volution layer and use the dropout in test phase as well. Specifically, segmenta-
tion samples from the output predictive distribution are obtained by performing
T stochastic forward passes through the network, i.e., (zt,vt) = FŴt

(X), t =
1, · · · , T where Ŵt is an effective network weight after the dropout. In each
forward pass, the fraction of network weights (denoted by dropout rate) are dis-
abled and the segmentation score is computed using only the remaining weights.
The segmentation score vector ȳ and the aleatoric variance v̄ is obtained by
averaging the T samples, via monte carlo integration:

ȳ =
1
T

T∑

t=1

Softmax(zt) (2)

v̄ =
1
T

T∑

t=1

vt (3)

The average score vector contains the probability score for each retinal layers
class, i.e. ȳ = [ȳ1, · · · , ȳC ]. The overall segmentation uncertainty for each pixel
can then be obtained as:

U(ȳ) = −
C∑

c=1

ȳclog ȳc + v̄ (4)

where the first term denotes epistemic uncertainty of the score computed as the
entropy of the average score vector obtained by averaging T stochastic predic-
tions (Eq. 2) and the second term is the uncertainty output produced by the
network itself (Eq. 3). We set the dropout rate = 0.4 and T = 50 to allow suffi-
cient sampling of network weights for final prediction.
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For uncertain predictions, network assigns higher probabilities to different
classes for different forward passes, resulting in higher epistemic uncertainty
given by Eq. 4. For the certain predictions, network assigns higher probability
to the true class for different forward passes, resulting in lower epistemic uncer-
tainty. Since epistemic uncertainty is related to the model parameters weights,
it can be reduced by observing more data. This is because, the network becomes
robust towards weight dropout in test phase as it observes more data.

3 Experiments

The dataset [19] consists of 1487 images from 15 spectral-domain optical coher-
ence tomography (OCT) volumes from unique normal subjects acquired on a
Spectralis scanner. The size of each volume is 512 × 496 × Nslices where Nslices

is different for each volume and ranges from 49–100. All scans have axial reso-
lution of 3.87µm. The ground truth has been obtained by manual annotation
of the nine boundaries from eight retinal layers [12]. To facilitate the pixel-wise
semantic segmentation, we convert the layer boundaries to the probability map
for the eight layers regions and the background region. Therefore, the number
of classes is C = 9.

Out of 1487 images, we select 1116 images from 12 volumes to create a train-
ing set and remaining 291 images from 3 volumes for validation. We compare
our method with the baseline FC-DN [10] which do not take into account uncer-
tainty, i.e., the networks do not output aleatoric variance and segmentation is
performed in a single forward pass by disabling the dropout is the test phase.
To train these networks, we use non-bayesian class weighted cross entropy loss
function which can be derived by setting T = 1 and v = 0 in Eq. 1.

Table 1. Performance of our proposed retinal layer segmentation method compared
with the state-of-the-art Jégou et al. [10] and Lang et al. [12] segmentation methods.

Layer Dice Coefficient Boundary Absolute error µm

FC-DN [10] BFC-DN Lang et al. [12] BFC-DN

RNFL 0.94 ± 0.01 0.95 ± 0.01 ILM 2.6 ± 3.89 1.81 ± 4.12

GCL+IPL 0.96 ± 0.01 0.97 ± 0.01 RNFL-GCL 4.0 ± 6.11 3.6 ± 6.3

INL 0.91 ± 0.01 0.93 ± 0.01 IPL-INL 3.78 ± 4.41 2.6 ± 2.73

OPL 0.90 ± 0.01 0.91 ± 0.01 INL-OPL 3.66 ± 3.84 2.9 ± 2.8

ONL 0.96 ± 0.008 0.96 ± 0.005 OPL-ONL 3.4 ± 4.24 2.64 ± 2.54

IS 90 ± 0.01 0.91 ± 0.01 ELM 2.79 ± 2.68 2.44 ± 2.4

OS 0.91 ± 0.01 0.92 ± 0.01 IS-OS 2.38 ± 2.49 2.1 ± 2.3

RPE 0.95 ± 0.01 0.96 ± 0.008 OS-RPE 4.16 ± 4.13 3.8 ± 3.3

– – – BrM 3.87 ± 3.69 3.14 ± 2.81
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Table 1 compares the average Dice coefficient (DC) between the ground truth
and predicted segmentation of the 8 layers using the proposed Bayesian method
(BFC-DN) and non-Bayesian method (FC-DN [10]). The proposed method BFC-
DN resulted in highest DC of 0.97 for GCL+IPL layer and lowest DC of 0.91
for OPL and IS layer. Moreover, BFC-DN resulted in improved segmentation for
most of the layers in comparison to FC-DN. Table 1 also compares the average
absolute error for 9 boundaries of our method with [12]. We observe that BFC-
DN resulted in lower error than [12] which indicates proposed uncertainty based
method is effective in segmenting retinal layers.

Figure 1 shows the examples of segmentation and uncertainty maps produced
by our proposed method on few images from the validation set. It can be seen
that our method produces pixel-wise uncertainty associated with the segmenta-
tion output where high uncertainty correlates with the inaccurate segmentation
in the corresponding region. In order to validate the robustness of our proposed
method against noise, we evaluate the performance by adding random block
noise to the test images as shown in the last row image of Fig. 1. We observe
that BFC-DN performs much better than FC-DN in presence of large noise levels
as shown in Fig. 2. This demonstrates that BFC-DN is more robust towards the
noisy images than FC-DN.

Fig. 1. Examples of retinal layer segmentation and uncertainty quantification using
proposed BFCN-Densenet. (a) test images, (b) ground truth, (c) predicted segmen-
tation map from FBC-Densenet (d) uncertainty map (warmer color denotes regions
with higher uncertainty). The last row shows an example of layer segmentation in test
images with added random block noise.

The average execution time for the retinal layer segmentation for BFC-DN is
2.5 s per image Tesla-K40 GPU which is somewhat slower than that of FC-DN
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Fig. 2. Comparison of average segmentation performance of proposed BFC-DN with
FC-DN [10] for different noise levels. The number of random block noise components
at a given noise level is double than that at previous level.

which took 300 ms. This is because our model requires T forward passes in the
test phase in contrast to FC-DN which requires one forward pass.

4 Conclusion

In this paper, we proposed a Bayesian deep learning based method for retinal
layer segmentation in OCT images. Our method produces layer segmentation
and corresponding uncertainty maps depicting the pixel-wise confidence mea-
sure of the segmentation output. Experimental results demonstrate that our
method compares favorably with non-bayesian DL methods, particularly in the
presence of noise and outperforms sate of the art boundary based segmentation
method. We have shown qualitatively that the resulting uncertainty maps cor-
relates with the inaccuracies in segmentation output. The proposed method is
applicable in determining the confidence of image analysis modules that utilizes
the segmentation output for downstream analysis. Such uncertainty visualization
can also be useful in computer-assisted diagnostic systems where clinician have
additional insight about various measurements generated by the system to make
necessarily adjustments and make more informed decisions Also, the resulting
uncertainty map can be integrated within active learning systems to correct the
segmentation output.
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