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Abstract. Colorectal cancer patients would benefit from a valid, reli-
able and efficient detection of Tumor Budding (TB), as this is a proven
prognostic biomarker. We explored the application of deep learning tech-
niques to detect TB in Hematoxylin and Eosin (H&E) stained slides, and
used convolutional neural networks to classify image patches as contain-
ing tumor buds, tumor glands and background. As a reference standard
for training we stained slides both with H&E and immunohistochem-
istry (IHC), where one pathologist first annotated buds in IHC and then
transferred the obtained annotations to the corresponding H&E image.
We show the effectiveness of the proposed three-class approach, which
allows to substantially reduce the amount of false positives, especially
when combined with a hard-negative mining technique. Finally we report
the results of an observer study aimed at investigating the correlation
between pathologists at detecting TB in IHC and H&E.
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1 Introduction

Tumor budding is defined as the presence of detached single epithelial cells or
small clusters of up to 5 cells at the invasive front of colorectal cancer. It can also
be found within the tumor mass, which is typically organized in irregular clus-
ters of long stretched tumor glands. Tumor budding (TB) has received increas-
ing attention by gastrointestinal pathologists as a promising adverse prognostic
factor of lymph node and distant metastasis for colorectal carcinoma (CRC)
patients. Incorporation of the phenomenon into the currently used staging sys-
tem would contribute to more effective risk stratification [5]. Unfortunately, there
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Fig. 1. Schematic overview of the proposed approach.

is no established procedure for the detection of TB so far, mainly due to the fact
that there has been no reproducible method of assessment.

One of the main obstacles to the reproducibility of TB quantification has been
the process of choosing the fields in which tumor budding is most intensive. In
2016, it was decided as a standard to assess the extent of TB on Hematoxylin
and Eosin (H&E) in a 0.785 mm2 hot-spot with highest TB density [5].

Microscopic identification of tumor buds in H&E by a pathologist can be diffi-
cult because of the resemblance of buds to surrounding stromal cells, fragmented
glands and the concealment of buds in the setting of a peritumoral inflammatory
reaction. Most studies of tumor budding have provided little detail regarding the
morphologic criteria, used to include or exclude a potential bud [6]. Although
tumor budding can be assessed in standard Hematoxylin and Eosin (H&E) in
unproblematic cases, immunohistochemistry (IHC) with cytokeratin antibodies
facilitates the detection. IHC staining highlights all epithelium and can be used
for the identification of most adenocarcinomas. As IHC does not stain stromal
components or tumor infiltrating lymphocytes in colon cancers, this staining can
be helpful.

While manual evaluation of histological slides is still essential in clinical rou-
tine, automated image processing can provide high-throughput analysis of tumor
tissue and assist the pathologist, by performing tasks such as the segmentation,
classification and detection of phenomena. In recent years, Deep Learning has
been leveraged to successfully address this kind of tasks. Recent developments
in the field of computational pathology with Convolutional Neural Networks
(CNN) are demonstrated by [1,8]. In the area of tumor budding, seminal work
was done in Caie et al. [2], where immunofluorescence was employed for the
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automatic detection and quantification of TB. Even though this procedure is
advantageous for initial investigative purposes, immunofluorescence usually will
not be applicable to clinical routine [2].

In this study we will focus on the development of a computer aided, quanti-
tative method for detecting TB in H&E-stained CRC slides. A schematic repre-
sentation of the process is given in Fig. 1. To the best of our knowledge, we are
the first to pursue automated detection of TB in H&E. In order to investigate
the reliability of manually obtained annotations, we conduct an observer study
in which we compare the bud scores of the pathologists involved, in IHC and in
H&E. We propose to build a reference standard by first detecting TB in IHC and
then transferring the findings to H&E. This procedure ensures a more reliable
reference standard of TB in H&E. We then use the mapped buds in the H&E
slides to train a CNN for multiple class patch classification. The output of the
network finally will be post-processed to obtain the bud detection.

2 Method

Materials - Data from 60 CRC patients with presence of tumor budding reported
during the initial sign out were included in this study. Tissue slides were pre-
pared from tissue blocks on which the invasive front was clearly visible, which
were stained with H&E, digitized, and re-stained with CK8-18. This procedure
ensured having two digitized slides of exactly the same tissue section with two
different stains. Glass slides were digitized using the Pannoramic P250 Flash II
scanner from 3D-Histech, at 20X magnifiction (spatial resolution of 0.24µm/px).
Following the aforementioned hot-spot driven procedure, the invasive fronts of
tissue sections were visually established from low-resolution images and the one
hot-spot per image was chosen. After the hot-spot was selected, buds were man-
ually annotated by one pathologist by clicking a point in the centre of the bud
and drawing a circle around it automatically, based on a pre-calculated, average
bud area of 600µm2. In this way, an average of 5 TB per hot-spot was obtained.
To obtain a reference standard, we transferred the buds annotated in the IHC
slides to the H&E slides. Due to re-staining, deformations can occur, which in
some cases results in misalignment in the tissue images. For this reason, we per-
formed a semi-automatic image alignment process. This process was done by
software from 3D-Histech after selection of corresponding points in the H&E
and IHC slides. The transferred annotations in H&E were corrected for false
positives after visual assessment by the pathologist.

Tumor buds are not only located at the invasive tumor front (peritumoral
budding), but are also found within the tumor mass, namely in the stroma
between the tumor glands (intratumoral budding). For this reason, having a
differentiation between buds and tumor glands is beneficial, because it allows the
discrimination of small tumor areas from large tumor areas, and also potentially
identifies small groups of tumor cells that are part of the tumor mass, and
therefore no TB. This motivated us to make annotations of tumor glands (TG)
as well by delineating the tumor glands in the H&E hotspot images, which we
used in the development of our method.
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Table 1. Architecture of the CNN used in this project. MP = max-pool layer,
D= dropout layer with 0.5 drop-probability, convA-B is a convolutional layer with
B filters of size A×As. The last convolutional layer has C filters, where C indicates
the number of classes (C = 2 or C = 3 in this paper).
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The set of input images and corresponding annotations was randomly divided
into a training (36 images, 194 buds), a validation (14 images, 73 buds in total)
and a test set (10 images, 38 buds in total).

Convolutional Networks for Tumor Bud Detection - Inspired by the VGG16-net
architecture [7], which was ranked at the top of ILSVRC challenge 2014, a VGG-
like network was developed with two configurations: one with 2 output classes
(TB versus Background) and one with 3 output classes (TB, TG, Background),
as shown in Table 1. The input of both network configurations is a RGB patch of
256×256 px. This size was chosen in order to contain the surface of the area equiv-
alent to the largest TB in our dataset, i.e., ≈2500µm2. For training purposes, class
balanced patches were randomly sampled within the hot-spot. In order to sample
TB patches, all pixels within the circle around the manually annotated TB loca-
tion were considered. Training data were augmented by random flipping, rotating,
elastic deformation, blurring, brightness (random gamma) and contrast changes.
This artificially increased the number of samples and is known to optimize the
network’s robustness to variations in real samples of the images. Because of the
relatively small amount of data and related risk of overfitting, we applied L2 reg-
ularization (λ = 0.00009), and dropout layers were added after the 2nd and 4th
max-pool layer, with a drop-probability of 0.5. The densely connected layers were
replaced by convolutional layers with 1024, 512 filters respectively to enable clas-
sification of arbitrary size inputs during inference. The final convolutional layer
has C 1 × 1 filters with C representing the number of output classes. The training
procedure involved optimizing the multinomial logistic regression objective (soft-
max), using stochastic gradient descent with Nesterov momentum. The batch size
was set to 15, momentum to 0.9. We used an adaptive learning rate scheme, where
the learning rate was initially set to 0.00001 and then multiplied by a factor of 0.7
after every 5 epoch if no increase in performance was observed on the validation
set. The weights of the network were initialized as proposed in He et al. [3]. The
networks were trained for 100 epochs.

We investigated the effect of doing hard-negative mining (HNM), applied
exclusively to the output of the network with the three output classes. After
classifying the training set with the trained network, we trained this network
with the same settings again from scratch. In contrast to the procedure followed
earlier during training, in which balanced mini-batches were used, we reduced the
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(a) (b)

Fig. 2. Scatterplots of the amount of scored buds per image in (a) H&E, (b) IHC.
Perfect agreement line and trend-line have been plotted.

Table 2. Corr. matrix of budding score in (left) H&E and (right) CK8-18. Classes are
in line with the ITBCC 2016; Bd1 (0–4 buds), Bd2 (5–10 buds) and Bd3 (10+ buds)

Obs. 1 Bd1 Bd2 Bd3
Obs. 2

Bd1 31 4 0
Bd2 3 4 0
Bd3 4 6 8

Obs. 1 Bd1 Bd2 Bd3
Obs. 2

Bd1 18 0 0
Bd2 3 2 0
Bd3 4 8 25

number of patches of the third class (Background) by 50% and replaced them by
hard-negatives: false positives with a probability of 0.7 (empirically determined)
or higher, obtained from the likelihood maps. The number of patches of the TB
and TG class were kept equal. The used 50-50 ratio was empirically observed to
produce better results compared to other settings.

The output of all networks is in the form of C likelihood maps. In order to
obtain the final detection of TB, we computed the center of mass of all con-
nected components obtained after thresholding the output map of the TB class.
The threshold was determined based on the validation-set and set to a proba-
bility of 0.7. Automatic detections at an euclidean distance of hand-identified
buds, smaller or equal to 26µm (which corresponds to the equavialent diameter,
i.e., a single CRC tumor cell) were labeled as bud. In order to reduce TB false
positives in the Tumor Glands, we applied a post-processing step to the results
of the 3-class network configuration with HNM. For this purpose, we used the
likelihood maps of the TG class to extract the contour of each classified glands.
Bud candidates with a center or mass within the TG border and half the esti-
mated equivalent diameter of a TB (i.e., 13µm) were removed, as it was assumed
that this implied an incomplete detachment from the tumor gland and therefore
indicating a group of tumor cells that still belonged to the tumor gland itself.

In order to compute quantitative detection performance, the final detections
were compared to the hand-annotated TB, in terms of F1-score and free receiver-
operation characteristics (FROC) curve.
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3 Observer Study

An observer study was conducted to assess inter-observer variability at TB detec-
tion on the 60 H&E and on the corresponding 60 IHC hot-spot images. In addi-
tion to the pathologist who, as described, annotated the buds in an earlier phase
for the reference standard, a pathologist from another hospital was now involved.
The pathologists annotated 747 buds in total in H&E. Among these detections
only 143 (20%) were detected by both observers. Points closer than 26µm from
each other were considered as belonging to the same bud. On IHC a total amount
of 2092 buds was identified, 570 (27%) by both pathologists. The amount of TB
counted in each image by the two observers is depicted as a scatter plot in Fig. 2,
where also the correlations are shown between the observers. As can be seen, the
second pathologist significantly annotated more buds (x1.3 in H&E, x1.8 in IHC).

In order to get further insights on the interobserver agreement, Intraclass- and
Spearman Correlation coefficients as well as Kappa values were calculated. Intr-
aclass correlations (Two-way mixed single measures with Absolute agreement)
of r = 0.664 (95% CI 0.442–0.798) in H&E and r = 0.679 (95% CI 0.233–0.847)
in IHC were found. Note the relatively large 95% confidence intervals (CK range
even greater than H&E range). Spearman correlation coefficients were found for
H&E r = 0.706 and CK r = 0.907.

For calculation of the Kappa scores raw bud counts were classified according
to ITBCC 2016 classes, see Table 2. Kappa values of 0.46 (H&E) and 0.55 (IHC)
were determined.

4 Experimental Results

Fig. 3. FROC curves presenting the
performance for all CNN’s.

We evaluated the performance of the dif-
ferent network configurations as described
in Sect. 2.2, via FROC analysis, as shown
in Fig. 3. For this purpose, we first com-
pared the performance of the networks with
2 classes and with 3 classes without HNM.
As can be seen in Fig. 3 the FROC perfor-
mance of the network with 3 classes is sub-
stantially better than the one with 2 classes,
achieving higher sensitivity with less false
positives per hot-spot, even when HNM is
not used. Secondly we assessed the perfor-
mance of the CNN trained with three classes when training examples were uni-
formly randomly sampled, and when hard-negative mining was used. It can be
observed that the network with hard-negative mining gives consistently better
FROC performance. Finally we compared the results of the CNN with HNM,
with and without false positive reduction based on the distance from TG. As
shown, the proposed post-processing technique improves the results slightly. The
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(a) (b)

Fig. 4. Example of details of two hot-spots (a) and (b). The original H&E stained
image (top left), the CK stained image (top right), the likelihood map (bottom left)
and the final output (yellow) with the manual annotations (blue) are depicted. (Color
figure online)

network with 2 classes and 3 classes, reached a F1-score of 0.16 and 0.20 respec-
tively, with recalls of 0.68 and 0.72. With HNM without post-processing a F1-
score of 0.31 was reached and with HNM plus post-processing a F1-score was
reached of 0.36, with a recall of 0.72 for both networks.

The likelihood maps of predicted hot-spots of the CNN with HNM and post-
processing are shown in Fig. 4. A closer inspection of the accompanying maps
seems to indicate that this CNN is better able to distinguish TB and stroma
components from each other compared to the former CNN’s, although it is also
visible that it still contains false positives in the stroma area.

5 Discussion and Conclusions

In this study we explored the development of a computer aided tool for detection
of TB in H&E stained images, based on convolutional neural networks. We used
a VGG-like network first in a configuration with two output classes (TB and
Background) and in the second instance with TG as an extra output class.
We applied the method of hard-negative mining to the results of the 3-class
network. The ratio for HNM was set at 50-50. We also tested with different higher
ratios (more hard-negatives less Background) however, we saw that the network
became less certain with regard to labeling of the class TB (lower sensitivity),
a phenomenon possibly due to TB incompleteness in the reference standard. In
connection with the persistent problem of the false positives in the tumor glands,
we eventually applied a post-processing step to the last results. With this step,
buds detected by the network in the immediate vicinity of the outline of the
tumor glands were removed. However, it is clear that this procedure carries the
risk that buds in the immediate vicinity of the gland contour are missed. We
have analyzed the results after the post-processing step. We mainly investigated
residual false positives. The analysis indicates that also the presence of larger
buds (potentially poorly differentiated clusters; small clusters of >5 tumor cells)
is problematic in the task to be performed, which is discriminating between TB
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and TG. We therefore propose to use not only TB and TG but also PDCs as
separate output class in future work.

We calculated the degree of agreement between the scores of the two patholo-
gists using both the Spearman Correlation Coefficients and ICCs. The ICC takes
into account how many buds in an image have been annotated by both patholo-
gists, whereas the Spearman Correlation Coefficient only reflects the relationship
between the number of annotated buds, and thus also gives a high correlation
when the same number is scored, but not –more specifically– the same buds.
Several TB investigators have included an assessment of interobserver variation
in prognostic studies [4]. Based on scores from 2 or more observers, reported
Kappa values for tumor budding scores range from 0.41 (moderate) to 0.938
(very good), depending on methodological factors, but also for example on the
experiance of the participants. The level of agreement found in our study is
moderate, although fairly in line with numbers reported by others. In view of
this a better reference standard may be obtained by considering majority voting
of buds detected by several pathologists in a pool of experienced observers. The
reference standard can also be improved by a more precise TB annotation. In
this seminal work we marked buds in the dataset by clicking and then creating
an artificial outline (circle; surface equal to calculated average bud-surface). As
a result, the smaller, usually single buds have been presented for analysis in
conjunction with much surrounding stroma. In the future, this step could be
replaced with delineating the real outlines (basement membranes) of the TB.

As our results confirm, generally a plurality of TB are found in CK, so appar-
ently many buds in H&E are withdrawn from human perception. For this reason
in our study previously marked equivalent IHC stained images were used for
annotating the H&E training data set. Although this procedure will have con-
tributed to the reliability of the reference standard in H&E, this may not have
been sufficient. This conclusion is supported by our observations on the testing
of several ratios for the HNM process, as we have noticed that increasing the
ratio (more hard-negatives, less Background) led to a lower sensitivity. In con-
nection with these findings, future work could focus on detection of TB in IHC
staining first, whereby a procedure for better consensus on TB status between
pathologists will be sought.
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