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Abstract. Labeled data is the current bottleneck of medical image
research. Substantial efforts are made to generate segmentation masks
to characterize a given organ. The community ends up with multiple
label maps of individual structures in different cases, not suitable for
current multi-organ segmentation frameworks. Our objective is to lever-
age segmentations from multiple organs in different cases to generate a
robust multi-organ deep learning segmentation network. We propose a
modified cost-function that takes into account only the voxels labeled
in the image, ignoring unlabeled structures. We evaluate the proposed
methodology in the context of pectoralis muscle and subcutaneous fat
segmentation on chest CT scans. Six different structures are segmented
from an axial slice centered on the transversal aorta. We compare the per-
formance of a network trained on 3,000 images where only one structure
has been annotated (PUNet) against six UNets (one per structure) and
a multi-class UNet trained on 500 completely annotated images, show-
ing equivalence between the three methods (Dice coefficients of 0.909,
0.906 and 0.909 respectively). We further propose a modification of the
architecture by adding convolutions to the skip connections (CUNet).
When trained with partially labeled images, it outperforms statistically
significantly the other three methods (Dice 0.916, p<0.0001). We, there-
fore, show that (a) when keeping the number of organ annotation con-
stant, training with partially labeled images is equivalent to training with
wholly labeled data and (b) adding convolutions in the skip connections
improves performance.
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1 Introduction

Segmentation of structures of interest is one of the main tasks of medical image
analysis, serving as a prior step to biomarker quantification. Deep learning has
been used to solve many segmentation problems [1] in images ranging from
computed tomography [2] to MRI [3] or even in multi-modality images with the
same network, [4] for one or multiple-organs [5].

Current deep-learning segmentation algorithms are trained on a dataset
where the structures of interest are annotated, producing a complete mask per
case. Every voxel is given a label, as being either a structure or background.
This enables to optimize cost functions such as the normalized cross entropy or
the dice coefficient [6,7].

While this learning methodology has achieved great performance in single
and multi-structure detection, it is not scalable to complete multi-organ seg-
mentation, since it would require an extensive dataset where all the voxels are
annotated. The expenses incurred in the generation of such dataset are beyond
the scope of the effort that the community can afford. However, through the
organization of challenges and public datasets, a great wealth of annotated cases
with one or few structures of interest are currently available. What if we could
leverage these single-organ databases for the generation of multiple-organ seg-
mentation algorithms?

In this manuscript, we address this issue and propose a principled method-
ology to train a multi-class deep-learning segmentation algorithm from partially
labeled datasets. The proposed method encodes the labels in a one-hot schema
and optimizes the average per-structure dice coefficient. The proposed custom
loss function adapts to the labels being provided. One of the most popular seg-
mentation network architectures is the UNet [8], consisting of an encoding path,
a decoding path and a set of skip connections [9]. We will, therefore, perform
our experiments with UNet-based networks. We further such architecture by
adding convolutions in the skip connections. Such is done to allow for flexibility
between the information used in the encoding and decoding paths of the UNet.
Such UNet, labeled CUNet, shows statistically significant improved performance
over the baseline UNet.

We illustrate the proposed methodology in the problem of pectoralis and sub-
cutaneous fat segmentation. Those structures have been shown to be of clinical
relevance in different diseases like Chronic Obstructive Pulmonary Disease and
Lung Cancer [10,11]. Prior work has attempted to segment this structures using
atlas-based techniques [12] and standard UNets [13].

This work is closely related to the work of [14], where the authors use few 2D
annotated axial slices to train networks able to segment the whole 3D structures
using a weighted softmax cost function. In their work, unlabeled voxels are given
a zero weight and therefore do not contribute to the computation of the error.
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Our works differs from [14] in the sense that we use a weighted cost function
on the per-structure dice score. Our proposed cost function penalizes pixels that
are not assigned to the right structure, even if the precise right structure of such
pixel is unknown.

Fig. 1. Left: Axial slice at the level of the transversal aorta zoomed at the pectoralis
region. Middle: Reference standard. Right: Segmentation obtained with the proposed
method. Color code: blue: right pectoralis major, green: right pectoralis minor, yellow:
right subcutaneous fat, light blue: left pectoralis minor, magenta: left pectoralis minor,
red: left subcutaneous fat. (Color figure online)

2 Materials and Methods

2.1 Data

CT scans were acquired from a large retrospective COPD observational
study [15]. An expert identified the axial slice where pectoralis muscles were
most visible at the level of the transversal aorta and segmented six different
structures: left pectoralis major, left pectoralis minor, right pectoralis major,
right pectoralis minor, left pectoralis subcutaneous fat and right pectoralis sub-
cutaneous fat. The annotations were generated by applying intensity thresholds
to the image and manually in-painting the structures of interest. Subcutaneous
fat was defined as the layer of fat between lying between the margins of the
major pectoralis muscle and the skin. Complete annotations (for the six struc-
tures) were generated for 2,000 cases, forming the completely annotated dataset.
Partial annotations (only one structure per case) were generated for 3,000 cases,
forming the partially annotated dataset.
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Fig. 2. Schema of the proposed training methodology. The input to the network is an
image, the segmentation mask where only one of the structures is segmented and the
structure identifier. The output of the network is a segmentation of all the structures
present on the image encoded in a one-hot schema. Each channel has information of
only one structure or the background. Only the channel corresponding to the labeled
structure is used to compute the loss metric. The structure of the network is, in this
case, the proposed CUNet - a UNet with convolutions in the skip connections.

2.2 Algorithm

Network: The network structure of the proposed algorithm is the same as the
UNet [8], but allowing for multi-class segmentation by adding a one-hot coding
schema in the last layer, which has a softmax activation. We name such network
a partial-UNet (PUNet). The output of the network is an image of the same
dimensions as the original, but with N+1 channels, one per each of the N struc-
tures and an extra one for the background. We further modify such architecture
by adding convolutions in the skip connections (CUNet). The schema of the mod-
ified network is depicted in Fig. 2. The input to the networks is the 512× 512
pixels CT axial slice, where the Hounsfield units (HU) have been clipped to the
range [−300, 500] and then normalized to the range [−0.5, 0.5]. The training set
is formed by {Xi, (Yi, idi)}, where Xi is the image, and Yi is the segmentation
mask associated with the structure identifier idi. The final per-pixel class is
computed in a maximum likelihood fashion.

Cost Function: We use a cost-function that is the sum of the per-structure
soft dice score for the structures that are present in the mini-batch. Thus, the
loss function for a training point can be written as:

f(Yi, Ŷi) =
∑n

i=1 δ(idi = i)dice(Yi, Ŷi)∑n
i=1 δ(idi = i)

(1)
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where δ is a function equal to one if the structure is present in the masks of
the minibatch and zero otherwise, dice stands for the Dice coefficient, Ŷ is the
output of the softmax layer of the network, and n stands for the number of
structures in the problem. Please note that Ŷ is a real-valued scored over all the
voxels of the image. Therefore the cost function is an approximation of the real
dice coefficient.

Baseline Algorithms: We compare the results of the UNet trained on with
partial labels (PUNet) and the modified architecture trained with partial labels
(CUNet) against (a) a multi-class u-net trained completely annotated images
(UNet) using as cost function the per-class normalized dice score and (b) six
per-organ u-nets (6xUNet) trained on the partially labeled dataset.

Training: 500 cases with complete annotations were used to train the baseline
UNet, 3,000 cases with partial annotations were used to train the CUNet, the
PUNet and six the per-structure UNets; 500 cases with complete annotations
were used to validate the training, perform model selection and optimize meta-
parameters and 1,000 cases with complete annotations were used only for testing
and to report the results. We use the well-known ADAM optimizer to train the
network with a learning rate fixed to 0.00005. The training is performed for a
maximum of 30 epochs, and the validation loss is monitored. Training is stopped
if the validation loss does not improve or decreases for five consecutive epochs.

2.3 Statistical Analysis

We use the Kruskal-Wallis statistical method to test if the per-method Dice
score samples are coming from the same distributions. Upon rejection of the null
hypothesis, we perform a non-parametric comparison for all pairs of methods
using the Dunn method for joint ranking. Statistical analysis was performed
with JMP Statistical Software (SAS Institute Inc.).

3 Results

The UNet trained with partial labels (PUNet) obtained a Dice score of 0.909,
similar to that of the six per-class UNets (0.907) and the UNet trained with com-
plete annotation (0.909). The modified architecture, (CUNet) achieved an overall
average dice score of 0.916, improving over the other methods. The per-structure
analysis can be found in Table 1. The Kruskal-Wallis test showed differences
between the CUNet and the other methods for the average dice (p < 0.0001).
PUNet, 6xUNets and UNet average dice scores did not reach significance between
them, indicating an equivalent behavior between such methods.

Figure 3 displays box-plots of the performance of the method per structure.
There is an evident presence of outliers for all the structures. Some selected
outliers are displayed in Fig. 4. We performed a post-hoc difference analysis
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Table 1. Average dice score and standard deviation per structure and global for the
proposed method and the alternative algorithms. UNet: multi-class unet trained in 500
annotated cases. 6xUNet: six UNets trained, one for each structure, in 500 cases with
partial labels. PUNet: unet multiclass trained in the partially labeled dataset with the
loss function of Eq. 1. CUNet: the proposed: the architecture of Fig. 2 trained on the
partially labeled dataset.

UNet 6xUNets PUNet CUNet

Left minor pectoralis 0.877 (0.087) 0.888 (0.091) 0.884 (0.084) 0.878 (0.100)

Left major pectoralis 0.915 (0.063) 0.923 (0.064) 0.918 (0.060) 0.922 (0.058)

Left subcutaneous fat 0.931 (0.068) 0.942 (0.070) 0.935 (0.066) 0.940 (0.064)

Right minor pectoralis 0.878 (0.082) 0.884 (0.091) 0.872 (0.087) 0.890 (0.078)

Right major pectoralis 0.921 (0.055) 0.914 (0.061) 0.919 (0.057) 0.928 (0.051)

Right subcutaneous fat 0.933 (0.068) 0.896 (0.109) 0.932 (0.067) 0.940 (0.063)

Mean per-case dice score 0.909 (0.049) 0.908 (0.056) 0.910 (0.050) 0.916 (0.048)

*
*

*

Fig. 3. Boxplots of the dice scores obtained with the different methdos. Left: all dice
scores per method. Horizontal bars with stars denote statistical significance. Only the
CUNet is statistically significantly different to the other methods. Right: per structure
boxplot. Statsitical significance bars have been removed for clarity.

between each method pair for each structure using the Dunn’s non-parametric
test. The modified architecture, CUNet, mean dice score was greater than the
traditional UNet for all structures analyzed (p < 0.0001). The CUNet did not
show significant differences with the 6xUNets for the left major and right minor
pectoralis and performed worse for the left subcutaneous fat and left minor
pectoralis structures (p < 0.01). However, CUNet performed on average better
than 6xUNets (p<0.0001).

Training time ranged from ≈ 3 min/epoch for the UNet trained with complete
labels to ≈ 18 min/epoch for the other methods, since they need to circle through
six times the number of raw training images. At test time, all methods analyzed
an image in ≈ 1s, while the 6xUNet needed 6s. All times measured in a 1080Ti
GPU.
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Fig. 4. Some challenging cases of the database. Each column is a different case. From
top to bottom: reference standard, jointly trained UNet, individually trained UNet,
UNet trained with partial labels (PUNet) and the UNet with convolutions in the skip
connections trained with partial labels (CUNet). We use the same color schema as in
Fig. 1. (Color figure online)

4 Discussion

We have presented a training methodology and a cost-function that enable the
generation of multi-class deep learning segmentation algorithms from partially
labeled images. We further the results by proposing a modification of the net-
work architecture. Our method has shown improvement over a UNet trained
on wholly annotated datasets and over six UNets trained for each organ indi-
vidually, improving statistically significantly over the overall Dice score. The
proposed CUNet improves the segmentation with respect to a traditional UNet
when keeping the rest of parameters constant.
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We have tested training with partially labeled datasets in the context of
body composition measurements from axial images in CT scans. However, the
proposed method is generalizable to any other context where multiple labels in
different cases are present and could be used to train multi-organ segmentation
method by leveraging single-class labeled data. In the current experiments, we
are assuming that each image has only been labeled with a single organ. However,
Eq. 1 could enable a variable number of classes to be present in each image. We
have focused on 2D images. However, extensions to 3D are straightforward, for
instance using a v-net instead of a u-net [14,16].

The proposed method segments pectoralis and subcutaneous fat with high
average dice coefficients, enabling its use for large cohort research. However, when
presented with images with poor quality, cases with thin pectoralis or with dense

Fig. 5. Three extra segmentations of cases with moderate DICE score in at least one
structure. The color conventions follows that of Fig. 4. Best viewed in color.
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breasts, the segmentation can be mislead, as shown in Fig. 5. Further analysis
of such outliers, and an importance sampling strategy that over-represents such
fringe cases, could be used to improve the performance of the algorithm.

We have chosen as cost function the average of the per-structure dice coef-
ficient, which is independent of the size of the structure being segmented. This
might pose problems with structures that are small or too difficult to segment.
An extension of the proposed method would be to modulate the cost function
with weights that take into account such structural properties. Such analysis
is left for future work. We have trained with a balanced dataset, in the sense
that each structure had the same number of annotated images in the partial
database. Modifications of Eq. 1 and data augmentation strategies can be made
to compensate for unbalanced datasets.

Deep learning segmentation methods have conquered most of single organ
segmentation problems. The next challenge in medical image segmentation would
be to segment complex images, such as CT scans entirely. With this work, we
have demonstrated that we can create multi-organ segmentation algorithms from
partially labeled datasets that are equivalent or better than algorithms trained
with wholly labeled datasets. This could be extrapolated to the creation of multi-
organ segmentation networks from the already existing per-organ segmentation
databases.n.
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