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Abstract. We present a superpixel-based strategy for segmenting skin
lesion on dermoscopic images. The segmentation is carried out by over-
segmenting the original image using the SLIC algorithm, and then merge
the resulting superpixels into two regions: healthy skin and lesion. The
mean RGB color of each superpixel was used as merging criterion. The
presented method is capable of dealing with segmentation problems com-
monly found in dermoscopic images such as hair removal, oil bubbles,
changes in illumination, and reflections images without any additional
steps. The method was evaluated on the PH2 and ISIC 2017 dataset with
results comparable to the state-of-art.

1 Introduction

Melanoma is a type of skin cancer that can occur in any type of skin, and it
is the leading cause of death among all skin cancer. A well-known criterion for
early-stage melanoma detection is the “ABCDE” rule, which was designed for
human-based visual analysis of a skin lesion. The“ABCDE” rule uses different
visual cues to classify the lesion type: (A) Asymmetry, (B) irregularity of the
Borders, (C) presence of specific Colors, (D) lesion shape and size, and (E)
evaluation of the lesion evolution over time.

Early detection of malignant melanoma in dermoscopy images is crucial and
critical since its detection in the early stages can be helpful to cure it. Com-
puter Aided Diagnosis systems are becoming very helpful in facilitating the early
detection of cancers for dermatologists. However, some challenges are present in
this type of images that make difficult for computers to identify the lesion from
healthy skin: presence of hair, changes in illumination, different types of skin,
reflections, and oil bubble are some of the most common artifacts found in this
type of images.

This paper focuses on constructing an accurate fully-automatic method to
identify skin lesions in dermoscopy images to facilitate accurate, fast and more
reliable identification and analysis. We used well-stated computer vision algo-
rithms to segment skin lesion by first over-segmenting the original image and
then merging the resulting regions into two types: skin lesion and healthy skin.
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One fundamental difference of our approach compared to previous work is
the fact that our segmentation method does not require a pre-processing step for
correcting image artifacts like hair removal or illumination correction in contrast
with most approaches in the literature. The stated work outputs a final binary
mask containing the image’s area where the lesion is located without the need
for any user-defined parameter.

The segmentation strategy was tested on the PH? [1] and the ISIC 2017
challenge (part 1) [2] datasets. PH? consists of 200 images divided into three
groups: common lesions, atypical nevi, and melanomas. ISIC, instead, has 2000
dermoscopic images with corresponding ground-truth segmentation. The exper-
iments using our approach show comparable results with respect to previous
works, achieving sensitivities and accuracy of around 92% in almost all tests,
and demonstrate that our algorithm can be a suitable tool for the development
of CAD support systems for the early detection of skin lesions.

The rest of this document is organized as follows: Sect.2 reviews previous
works on skin lesion segmentation. Section 3 presents a method for skin lesion
segmentation based on superpixel approach. Section4 experimental results are
presented. Finally, Sect. 5 concludes the paper and states potential future work.

2 Related Work

Many segmentation algorithms have been proposed in the literature to deal
with the problem of accurately segmenting skin lesion on dermatoscopic images
while classifying several types of lesions [3-6]. Such approaches share a common
structure that consists of first removing artifacts like hair and oil bubbles in
the images, and then segment the skin lesion using different combinations of
thresholding, clustering, and morphological operations.

One of the more representatives works on the subject is [7], where the authors
defined a complete framework for skin lesion segmentation and classification
based on Delaunay Triangulation. The polygons in such triangulation adapt to
the lesion border according to a color criterion. In an early work, Sabbaghi
et al. [8] also presented an interesting approach for this type of classification.
They used QuadTree algorithm to subsequently group pixels with similar color
properties and then analyze which color are present in each type of lesion. The
authors did not perform any segmentation and do the classification using the
whole set of pixels in the images.

Although Deep Learning is considered the state-of-the-art for a vast num-
ber of computer vision tasks, only in recent years deep learning methods have
started being applied to skin-disease segmentation and classification using dif-
ferent architectures and schemes [9-12].

In this paper, we proposed a novel superpixel-based method for segmenting
skin lesion on dermoscopic images without the need of pre-processing operations
for artifacts removals such as reflections and hair. The main idea of our method is
to over-segment the image into several superpixels, and then merge those which
belong to the skin lesion to create a binary mask containing the area where the
lesion is located.
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3 Skin Lesion Segmentation

In this section, we describe our method for skin lesion segmentation on der-
moscopic images. First, we use SLIC algorithm to obtain an over-segmentation
of the original dermoscopic image (I). Later, a binary search is performed to
find the best threshold to greedily merges all the superpixels into two regions:
lesion and healthy skin. Finally, a post-processing stage is run to remove small
superpixels and smooth the final segmentation.

3.1 Data Set

In order to test the proposed approach, we used the PH? [1] data set released
by the Universidade do Porto, in collaboration with the Hospital Pedro His-
pano in Matosinhos, Portugal. This data set contains 200 RGB dermoscopic
images of melanocytic lesions, including 80 common nevi, 80 atypical nevi, and
40 melanomas. All images have manually generated ground-truth segmentation
of the skin lesion of each image.

The method was also tested on the ISIC 2007 challenge dataset [2] which con-
sist of 2000 dermoscopic images with corresponding manually generated ground-
truth.

3.2 Superpixel Segmentation

Superpixels methods over segment an image by grouping pixels into units called
superpixels. One of the most well-known algorithms for superpixel segmentations
is Simple Linear Iterative Clustering (SLIC) developed by Achanta et al. in 2012
[13]. In SLIC the pixel grouping is done by clustering pixels with k-means algo-
rithm using as features their color intensities plus their (¢, j) coordinates of each
pixel, weighted by a factor «. The parameter « helps to regularize the trade-off
between spatial clustering and color clustering. Additionally, SLIC modifies the
basic k-means algorithm applying some constraints to prevent that unconnected
pixels could belong to the same superpixel.

For segmenting the skin lesion from the whole image, our method performs
a SLIC superpixel segmentation on the RGB dermoscopic images. Ideally, in the
over-segmented image, some superpixel’s boundary should match partially the
boundary of the object that is intended to segment.

SLIC requires a parameter k indicating the desired number of superpixels
in the resulting image. A low value of k, although faster, leads to few and big-
ger superpixels where the superpixel’s boundary does not entirely match the
boundary of the object. With higher values of k, too much over-segmentation is
done resulting in longer execution times with no significant improvement in the
resulting segmentation. Figure 1 shows the resulting superpixel segmentation for
two images and four different values of k. In our experiments we empirically set
k = 400.

All original images have a dark shadow around the four corners of the images.
This is an effect of the illumination setup in the dermatoscope device that was
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Fig. 1. SLIC segmentation for several k values. Left to right and top to bottom: k =
100, 200, 400, 600.

used to capture the images. To remove such effect, a binary mask is applied to
the resulting SLIC segmentation. The mask is defined as the maximum ellipse
inscribed in the image area.

3.3 Superpixel Merging

SLIC segmentation produces an over-segmented image with approximately k
pieces. Hence, a merging operation must be done to separate the skin lesion
(foreground superpixels) from the region containing pixels with no lesion (back-
ground superpixels). SLIC’s output can be seen as a label image (L) where each
integer label corresponds to one superpixel. From this representation, a Region
Adjacency Graph (RAG) is constructed. Each node is equipped with a list of
properties derived from its RGB intensity values: Mean color, total color, and
pixel count.

Superpixel merging is then done by greedily combining pairs of nodes using
the euclidean distance of the mean color of each node as criterion. If this differ-
ence is less than a threshold ¢, then the two nodes will merge, and a new node
is created. The new node’s properties are then calculated based on the merging
nodes.

A binary search determines the optimal threshold by running the merging
procedure with several values of ¢. Assuming RGB images with 3 channels, and
intensity levels of each pixel in the range: p € [0, 255], the distance between the
mean color of two different superpixels will in the interval (0,500). Therefore, the
binary search will be constrained to such interval. The search converges when for
a given t only two superpixels remain, or in the case that the maximum number
of iterations is reached, or if At < e. To avoid trivial results with just one region,
If the procedure result has only one superpixel, then it returns the last known
threshold with at least two regions.
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3.4 Post-processing

After merging with the optimal threshold, a post-processing step is performed
to determine the final segmentation and smooth the results. First, All remaining
regions with an area lower than 2% from the total area of the image are removed.
Small superpixels remaining after merging are considered as noise because the
two expected regions should be relatively significant areas corresponding to the
lesion or healthy skin.

The merging produces a label image (L) where each superpixel is associated
to an integer value. At this point, it is not possible to determine whether a
label corresponds to background or skin lesion. Therefore, image O is created by
applying adaptive equalization to a gray-scale version of the original image and
subsequently segmenting it using an Otsu threshold. Each label in L is compared
with O by calculating the Jaccard similarity index between the two areas. The
label with the maximum Jaccard index is selected as the final segmented image
after applying binary fill holes, and a morphological dilation with a disk-shaped
structural element of radius 8.

4 Experimental Results

To compare our segmentation with other methods, we performed the same set
of test presented in [7]. Hence, we used PH? ground-truth lesion segmentation to
evaluate the outcome of our algorithm using four metrics: sensitivity, specificity,
accuracy, and F-measure. Additionally, the data set was split into four subsets:
all images, common lesions, atypical nevi, and melanomas. Tables 1a to d show
the segmentation results as presented in [7], but extended with our results.

In each of the four tests, the presented strategy achieved significantly better
sensitivity than previous works. This means that pixels belonging to a skin lesion
are segmented correctly in a higher proportion compared with other methods
(fewer false positives). A similar situation occurs with the F-measure metric.
Also, better accuracy was also obtained in all test cases except with melanoma
lesions.

However, specificity did not perform as well as the other three metrics. In all
cases, specificity was slightly less than the highest value. This means our method
tends to classify healthy pixels as lesion over-estimating the lesion area.

In previous works, hair removal is in many cases addressed with an extra
preprocessing step before segmenting the lesion. This step involves the applica-
tions of different filters such as directional Gaussian filters [17] to the original
image. In contrast, our strategy does not require any additional step since SLIC’s
superpixels fit the borders of the lesion avoiding hair areas. Figure 2 shows the
segmentation results for three different images. Rows one and three correspond
to Atypical nevi lesion, and row two is a melanocytic nevus.
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Table 1. Segmentation results on the PH2 dataset.

(a) Using all 200 images (melanocytic nevi,  (b) Only 80 melanocytic nevi images (com-
dysplasic nevi, malignant lesions). mon healthy lesions).

Method ~ Sens.  Spec.  Acc. F-measure Method Sens.  Spec.  Acc. F-measure

JSEG[14] 0.7108 0.9714 0.8947 +0.0176 0.7554 JSEG[14] 0.6977 0.9783 0.9370 4 0.0027  0.7265
SRM[15] 0.1035 0.8757 0.6766 £0.0346 0.1218 SRM[15] 0.0751 0.9332 0.7250 £0.0277 0.0611
KPP 0.4147 09581 0.7815 +0.0356  0.5457 KPP 0.3360 0.9566 0.7912 40.0241  0.3960
K-means 0.7291 0.8430 0.8249 +0.0107 0.6677 K-means 0.7008 0.8767 0.8466 £ 0.8467  0.6004
Otsu 0.5221 0.7064 0.6518 +0.0203  0.4293 Otsu 04777 0.7832 0.6911 +0.0193  0.3658
Level 0.7188 0.8003 0.7842 +0.0295 0.6456 Level 0.7069 0.8262 0.7996 4+ 0.0264  0.5856

Set[16] Set[16]
ASLM[7] 0.8024 0.9722 0.8966 +0.0276 0.8257 ASLM[7] 0.8717 0.9760 0.9477 4+ 0.0032  0.8690
Our 0.9104 0.8973 0.9039 +0.1419 0.8918 Our 0.9212 0.9642 0.9524 +0.0637 0.9292
method method

(c) Only 80 dysplasic nevi images (atypical  (d) Only 40 melanoma images (malignant le-
moles). sions).

Method Sens.  Spec.  Acc. F-measure Method Sens. Spec. Acc. F-measure

JSEG[14] 0.7435 0.9708 0.9236 4+ 0.0065 0.7768 JSEG[14] 0.6746 0.9593 0.7591 4 0.0456 0.7710
SRM[15] 0.1042 0.8954 0.6812 £0.0358 0.0919 SRM[15] 0.2234 0.7512 0.4148 £0.0366 0.2852
KPP 0.2895 0.9446 0.7512 +0.0261 0.3568 KPP 0.2648 0.7623 0.4324 +0.0336  0.3589
K-means 0.7650 0.8804 0.8501 £ 0.0065 0.6914 K-means 0.5971 0.4870 0.5524 £0.0211 0.6064
Otsu 0.5515 0.7579 0.6779 +£0.0193  0.4372 Otsu 0.7073 0.7015 0.7249 +0.0214  0.7503
Level 0.7364 0.8237 0.7985 +0.0346  0.6532 Level 0.7141 0.7010 0.7313 +0.0230  0.7550

Set[106] Set[106]
ASLM[7] 0.8640 0.9733 0.9271 +0.0099 0.8689 ASLM[7] 0.5404 0.9597 0.6615 +0.0506 0.6524
Our 0.9225 0.9354 0.9314 +0.0841 09112 Our 0.8645 0.6870 0.7519 +0.2216 0.7779
method method

Table 2. Segmentation results compared with the state-of-the deep learning [12].

Method Jaccard | Accuracy
Optimized single 0.836 | 0.949
Default augmentation 0.828 0.947
No noise or dropout 0.812 0.941
Ensemble of 10 U-Nets 0.841 0.951
State-of-art 0.843 |0.953
Human expert average agreement | 0.786 0.909
Our method 0.606 0.869

Moreover, experimental results also show that the performance of our
method, although slightly lower, is comparable with those achieved by deep
learning methods (as shown in Table2), but without the use of artifacts like
fine-tuning or data augmentation.

Although the algorithm does an acceptable job segmenting the images, a
particular case occurs when the lesion consists of several unconnected regions.
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Fig. 2. Segmentation results for three different images. From left to right: Original
image with SLIC segmentation (kK = 400), Merged superpixels, final segmentation
binary mask, and ground-truth comparison. TP=light blue, TN=dark blue, FN: yellow

and FP: red.

Fig. 3. Skin lesion with two unconnected regions. The segmentation algorithm only
identified one of two parts.

In this case, the algorithm only chooses one region as the final segmentation as
stated in Sect. 3.4, resulting in an incorrect binary mask (See Fig. 3).

The source code implementation of the presented method is publicly avail-
able at https://github.com/dipaco/mole-classification, and is entirely written in
python 2.7. The implementation uses scipy and scikit libraries for its function-
ality. All tests ran on a desktop machine with an Intel Core i7 processor of
2.5 GHz.


https://github.com/dipaco/mole-classification
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5 Conclusions and Future Work

In this paper, we proposed a new fully-automatic strategy to segment skin lesion
on dermoscopic images. Our method uses the SLIC algorithm to over-segment
the image, and then merge the resulting superpixels to produce two regions:
healthy skin and skin lesion. The merging criterion is based on the mean color
intensity of each superpixel. Our method does not require any form of pre-
processing of the original image before segmentation and can produce slightly
better results than other approaches. In contrast with other works, our app-
roach is able to deal with the presence of hair in the original image without any
additional steps.

From Table 1a to d is possible to conclude that, for most methods, segmenta-
tion performance was low in cases where the images contained malignant lesions
compared with the case of common and atypical nevi. Despite this, our app-
roach achieved better sensitivity and F-measure, and the second-best accuracy
on melanocytic images.

Future work will focus on adjusting the merging criterion to deal with cases
where the lesion has more that one unconnected region.
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