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Abstract. Deep learning methods have gained increasing attention in
addressing segmentation problems for medical images analysis despite
the challenges inherited from the medical domain, such as limited data
availability, lack of consistent textural or salient patterns, and high
dimensionality of the data. In this paper, we introduce a novel multi-
network architecture that exploits domain knowledge to address those
challenges. The proposed architecture consists of multiple deep neural
networks that are trained after co-aligning multiple anatomies through
multi-metric deformable registration. This multi-network architecture
can be trained with fewer examples and leads to better performance,
robustness and generalization through consensus. Comparable to human
accuracy, highly promising results on the challenging task of interstitial
lung disease segmentation demonstrate the potential of our approach.

1 Introduction

Image segmentation is one of the most well studied problems in medical image
analysis [6,8]. Segmentation seeks to group together voxels corresponding to
the same organ, or to the same tissue type (healthy or pathological). Existing
literature can be classified into two distinct categories, model-free and model-
based methods. Model-based methods assume the manifold of the solution space
can be expressed in the form of a prior distribution, with sub-space approaches
(e.g. active shapes), probabilistic or graphical models and atlas-based approaches
being some representatives in this category. Model-free approaches on the other
hand rely purely on the observation space combining image likelihoods with
different classification techniques.

The emergence of deep learning as disruptive innovation method in the field of
computer vision has impacted significantly the medical imaging community [13].
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Numerous architectures have been proposed to address task-specific segmenta-
tion problems with the currently most successful technique being the Fully Con-
volutional Network (FCN) [11]. Additionally, FCNs have been combined with
upsampling layers, creating a variety of networks [2,9], and have been extended
to 3D [7], boosting even more the accuracy of semantic segmentation.

The main challenges for deep learning in medical imaging arise from the lim-
ited availability of training samples – that is amplified when targeting 3D archi-
tectures –, the lack of discriminant visual properties and the three-dimensional
nature of observations (high dimensional data). In this paper, we propose a novel
multi-network architecture that copes with the above limitations. The central
idea is to train multiple redundant networks fusing training samples mapped to
various anatomical configurations. These configurations correspond to a repre-
sentative set of anatomies and are used as reference spaces (frequently referred
to as atlases). The mapping corresponds to a non-linear transformer. Elastic reg-
istration based on a robust, multi-metric, multi-modal graph-based framework is
used within the non-linear transformer of the network. Training is performed on
the sub-space and back-projected to the original space through a de-transformer
that applies an inverse nonlinear mapping. The responses of the redundant net-
works are then combined to determine the optimal response to the problem.

The proposed framework relates also to the multitask learning paradigm
(MTL), where disparate sources of experimental data across multiple targets are
combined in order to increase predictive power. The idea behind this paradigm
is that by sharing representations between related tasks, we can improve gen-
eralization. Even though an inductive bias is plausible in such paradigms, the
implicit data augmentation helps reducing the effect of the data-dependent noise.
The idea of MTL for image segmentation has been incorporated before, such as
in deep networks [10] where soft or hard parameter sharing of hidden layers
is performed, or in multi-atlas segmentation [6], where multiple pre-segmented
atlases are utilized in order to better capture anatomical variation. As in most
ensemble methods, the concept is that the combination of solutions by proba-
bilistic inference procedures can offer superior segmentation accuracy.

AtlasNet differs from previous methods with respect to both scope and
applicability. In (single or multi) atlas segmentation, the aim is to map a pre-
segmented region of interest from a reference image to the test image, therefore
applicability is limited to normal structures (e.g. organs of the body or healthy
tissue) that exist in both images. Exploitability is further reduced in the case
of multi-atlas segmentation due to the rareness of multiple atlases. The pro-
posed strategy on the contrary is suitable also for semantic labeling of voxels
(as part of healthy or pathological tissue) without the requirement of spatial
correspondence between those voxels in atlas and test image.

AtlasNet uses multiple forward non-linear transformers that map all training
images to common subspaces to reduce biological variability and a backward de-
transformer to relax the effect of possible artificial local deformations. In fact,
due to the ill-posedness of inter-subject image registration, regularization con-
straints are applied to derive smooth solutions and maintain topological relation-
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Fig. 1. The proposed AtlasNet framework. Ai indicates atlas i.

ships among anatomical structures. Consequently, image registration does not
always produce a perfectly conforming diffeomorphism due to the nonexistence
of a single atlas that matches all anatomies. The use of multiple spaces comes
to reduce the atlas selection bias, while the backward transformation aims to
balance the effect of possible alterations in local image texture due to the non-
linearity in the transformation. Highly promising results comparable to human
accuracy on the challenging task of interstitial lung disease (ILD) segmentation
demonstrate the potential benefits of our approach. Furthermore, the obtained
performance outreached redundant conventional networks.

Finally, the proposed approach (Fig. 1) addresses most of the limitations of
existing neural network approaches. First, it requires fairly small number of
training examples due to the reduced diversity of observations once mapped
to a common anatomy. Second, it performs data augmentation in a natural
manner thanks to the elastic mapping between observations and representative
anatomies. Third, it inherits robustness, stability and better generalization prop-
erties for two reasons: the limited complexity of observations after mapping, and
the “anatomically” consistent redundancy of the networks.

2 Methodology

The method consists of two main parts, a transformer and a de-transformer part.
The former maps a sample S to N different atlases Ai, i ∈ {1, . . . , N}, constructs
their warped versions, and trains N different networks, while the latter projects
back the N predictions to the initial space. These projections are then combined
to obtain the final segmentation. The transformer part consists of a non-linear
deformable operator (transformer Ti) and a segmentation network Ci while the
de-transformer part uses the inverse deformable operator (de-transformer T−1

i )
to map everything back to the initial space of a sample S. The framework is
flexible, enables any suitable transformation operator (with an existing inverse)
to be coupled with a classifier.
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2.1 Multimetric Deformable Operator

The multimetric deformable operator, responsible for mapping samples to dif-
ferent anatomies (atlases) therefore reducing variance and producing anatomi-
cally meaningful results, is an elastic image registration method that follows a
context-driven metric aggregation approach [4] which aims to find the optimal
combination of different similarity metrics. The operator is implemented using a
deformable mapping from a source image S to a given atlas Ai. Let us consider
that a number of metric functions ρj , j ∈ {1, . . . , k}, can be used to compare
the deformed source image and the target Ai. The non-linear transformer T cor-
responds to the operator that optimizes in the domain Ω the following energy:

E(T̂ ;S,Ai) =
∫∫

Ω

k∑
j=1

wjρj(S ◦ T̂ , Ai)dΩ + α

∫∫
Ω

ψ(T̂ )dΩ

where wj are linear constraints factorizing the importance of the different metric
functions, and ψ() is a penalty function acting on the spatial derivatives of the
transformation as regularization to impose smoothness. Such a formalism can be
considered either in the continuous setting that requires differentiable functions
with respect to the metric functions ρj or in a discrete setting. The advantage of a
discrete variant is that it can integrate an arbitrary number and nature of metric
functions as well as regularizers while offering good guarantees concerning the
optimality properties of the obtained objective function. Inspired by the work
done in [5] we express the non-linear operator as a discrete optimization problem
acting on a quantized version of the deformation space.

We used free form deformations as an interpolation strategy, invariant to
intensity image metrics, pyramidal implementation approach for the optimiza-
tion and belief propagation for the estimation of the optimal displacement field
in the discrete setting. Details on the implementation can be found in [5].

2.2 Segmentation Networks

The segmentation networks Ci operate on the mapped image, Ti(S), to produce
a segmentation map and can be the same or different depending on the task
and the application and are completely independent of the exact classifier. After
defining the optimal deformations Ti, i = 1 . . . N , between the source image and
the different atlases in the transformer part, AtlasNet uses the inverse transfor-
mations to project back to the initial space of the source image S the predicted
segmentation maps: Sseg

i = T−1
i (Ci(Ti(S))).

In this work, motivated by the state-of-the-art performance of FCNs in sev-
eral problems we adapted them for dense labeling. We use the SegNet deep
learning network [2] which performs pixelwise classification and is composed of
an encoder and a decoder architecture and follows the example of U-net [9].
It consists of repetitive blocks of convolutional, batch normalization, rectified-
linear units (ReLU) and indexed max-pooling layers, similar to the ones of the
VGG16 network. For more details we refer to the original publication.
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Different fusion strategies can be used for the combination of the segmenta-
tions. We used the probabilistic output of the classifiers (before hard decision)
and fused the output of the different networks based on majority voting.

3 Implementation Details

For the registration, we used the same parameters for all images and all atlases.
Three different similarity metrics have been used, namely, mutual information,
normalized cross correlation and discrete wavelet metric. For the mutual infor-
mation 16 bins were used, in the range of −900 to 100.

We used the same parameters for training all SegNet networks (initial learn-
ing rate = 0.01, decrease of learning rate = 2.5 · 10−3 every 10 epochs, momen-
tum = 0.9, weight decay = 5 · 10−4). The training of a single network required
around 16 hours on a GeForce GTX 1080 GPU, while the prediction for a single
(volumetric) subject lasted only a few seconds. For data augmentation we per-
formed only random rotations (between −10 and 10◦) and translations (between
0 and 20 pixels per axis) avoiding local deformations since the anatomy should
not artificially change. Moreover, for training, we performed median frequency
balancing [2] to balance the data, as the samples with disease are considerably
fewer than the rest of the samples.

4 Experimental Results and Dataset

We used as case study to evaluate our method the ILD segmentation in CT
images because it is a challenging problem; boundaries are hard to detect and
delineation suffers from poor-to-moderate interobserver agreement [3]. Moreover,
although several visual scoring systems have been proposed for the disease, they
only allow basic quantification of ILD severity. The dataset includes 17 (volu-
metric) CT images consisting of 6000 slices in total, each being of 512 × 512
dimension, and annotations of lung and disease. The ILD annotation was per-
formed by a medical expert by tracing the disease boundaries in axial view over
all slices and used for training the classification model. Assessment of the method
was performed on images from 29 additional patients being fully annotated only
on selected CT slices (n = 20) by three different observers. Note that the data
was multi-vendor (GE & Siemens) and corresponds to the same moment of the
respiratory cycle.

Table 1. Evaluation metrics for the testing dataset for the scleroderma disease.

Method Sensitivity Precision Hausdorff dist. Average dist. Dice

SegNet [2] 0.348 0.623 4.984 1.891 0.533

Augmentation & SegNet [2] 0.534 0.567 4.077 1.309 0.619

Inter-observer 0.693 0.522 4.005 1.317 0.662

AtlasNet 0.682 0.545 3.981 1.274 0.677
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Fig. 2. Quantitative evaluation of the dice coefficient for varying parameters.

For all experiments we used 6 different atlases and registered both train-
ing and testing images to them. The choice of atlases was made by a radiolo-
gist towards integrating important variability of the considered anatomies. Our
experimental evaluation has two objectives: (i) to show that AtlasNet provides
more robust and accurate solutions compared to conventional networks and (ii)
to examine whether the proposed methodology can truly be trained with fewer
examples while leading to good performance. We used five metrics, namely sen-
sitivity, precision, Hausdorff, average contour distance and dice coefficient (over
the number of epochs), to evaluate the performance of the proposed method.

On the Number of Atlases: Figure 2a presents the behavior of our method
using different number of atlases. It can be observed that the dice initially
increases and tends to stabilize for more than 5 templates. Note that, even with
the use of only one atlas the deformable operator of AtlasNet helps to increase
the dice coefficient (from 0.533 to 0.604), as indicated by Fig. 2b and achieves
the highest values of dice compared to conventional networks and usual data
augmentation techniques.

On the Number of Training Samples: To evaluate the performance of our
architecture with less samples we used a reduced number of samples (30%, 50%
and 70% respectively) for the same number of epochs (18) and compare the
performance with the one in [2]. The obtained mean dice coefficient values in [2]
were 0.434, 0.462, 0.487, while for AtlasNet were 0.613, 0.646 and 0.672 respec-
tively, indicating the robustness of AtlasNet with a significantly lower number of
samples. In simple words, the proposed architecture produces better or similar
results with 30% of the samples compared to the state-of-the-art architecture [2]
with and without data augmentation.

Comparison with the State-of-Art: Although results on different datasets
are not directly comparable, we compare our method with works related to
ILD segmentation. Anthimopoulos et al. [1] classified CT image patches with
ILD patterns using a CNN and obtained 0.856 accuracy for 6 disease classes.
By extracting patches on our data (where different patterns are annotated as
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Fig. 3. Interstitial lung disease segmentation (depicted with red color) on two testing
subjects using the different employed strategies.

a single class) in the same way as in [1] we obtained 0.916 accuracy. In [12] a
patch-based CNN was augmented with a deep encoder-decoder to exploit partial
annotations. By applying AtlasNet on the same dataset as in [12], we increased
the mean dice from 0.671 to 0.725.

Moreover we compared AtlasNet with respect to disease segmentation with
standard frameworks (without registration and with or without data augmen-
tation) for the same number of epochs (18) and illustrate results in Table 1 and
Fig. 2b. For equal comparison, we assessed accuracies using the same classifica-
tion strategy [2] trained on the initial CT slices, and after performing data aug-
mentation as described earlier. The proposed method reports the best accuracy
with respect to Hausdorff distance, average contour distance and dice, indicating
that the disease segmentation is much more accurate than by the conventional
frameworks with or without data augmentation. This can be inferred also from
Fig. 3 where axial slices of two different subjects are depicted. It is clear that the
proposed approach segments accurately the boundaries of the disease.

For a more complete evaluation, we compare AtlasNet also with inter-
observer agreement using the annotations of three different medical experts.
In particular, the annotations of one observer have been used as ground truth
to evaluate the rest. From Table 1 and Fig. 3, it can be observed that Atlas-
Net demonstrates more robust performance than manual segmentation. Finally,
it is worth mentioning that even if the network operates on 2D slices, with-
out accounting for out-of-slice connections, the fusion of the different atlases’
predictions makes the final segmentation smooth across all three axes.

Concerning the computational resources, we use a single segmentation
network [2] for each of the N atlases, therefore the time and memory usage for
one atlas is that of the CNN, while we also showed that a small N (such as
6) suffices. For segmentation of one volumetric CT on a single GPU the total
testing time (using 6 atlases) is 3–4 min, including the registration step while the
registration cost is negligible since a graph-based GPU algorithm is used taking
3–5 s per subject. This cost drops linearly with the number and computing power
of GPUs. Thus, we believe that the additional complexity of AtlasNet is fully
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justified, since it improves performance by more than 20% and also maintains
it stable with only 30% of the training data compared to conventional single
networks.

5 Conclusion

In this paper, we present a novel multi-network architecture for (healthy
or pathological) tissue or organ segmentation that maximizes consistency by
exploiting diversity. Evaluation of the method on interstitial lung disease seg-
mentation highlighted its advantages over previous competing approaches as well
as inter-observer agreement. The investigation of techniques for soft parameter
sharing of hidden layers, and information transfer between the different networks
and atlases is our direction for future work. Finally, the extension to multi-organ
segmentation including multiple classes and loss functions is one of the potential
directions of our method.
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