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Abstract. Segmentation of the left atrium and deriving its size can
help to predict and detect various cardiovascular conditions. Automation
of this process in 3D Ultrasound image data is desirable, since manual
delineations are time-consuming, challenging and observer-dependent.
Convolutional neural networks have made improvements in computer
vision and in medical image analysis. They have successfully been applied
to segmentation tasks and were extended to work on volumetric data.
In this paper we introduce a combined deep-learning based approach on
volumetric segmentation in Ultrasound acquisitions with incorporation
of prior knowledge about left atrial shape and imaging device. The results
show, that including a shape prior helps the domain adaptation and the
accuracy of segmentation is further increased with adversarial learning.

1 Introduction

Quantification of cardiac chambers and their functions stay the most important
objective of cardiac imaging [7]. Left atrium (LA) physiology and function have
an impact on the whole heart performance and its size is a valuable indicator
for various cardiovascular conditions, such as atrial fibrillation (AF), stroke and
diastolic dysfunction [7]. Compared to cardiac computed tomography (CCT)
and cardiac magnetic resonance (CMR), as modalities to examine the heart,
echocardiography provides wide availability, safety and good spatial and tem-
poral resolution, without exposing the patients to harmful radiation. Volumet-
ric measurements consider changes in all spatial dimensions, however, to obtain
reproducible and accurate three-dimensional (3D) measurements, requires expert
experience and is time consuming [4]. Automated segmentation and quantifica-
tion could help to reduce inter/intra-observer variabilities and might also save
costs and time in echocardiographic laboratories [4].

Previous automatic and semi-automatic approaches for LA segmentation
have focused CCT and CMR as a planning and guidance tool for LA catheter
interventions [1]. For 3D Ultrasound (US), the left ventricle (LV) was the
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Fig. 1. Row 1: ground truth segmentation of LA, Row 2: prediction by DGA architec-
ture (Table 3), Column 1 & 2: device EPIQ 7C (trained on Vivid E9), Column 3 & 4:
device Vivid E9 (trained on EPIQ 7C), Column 5: device iE33 (trained on Vivid E9).

segmentation target, since its size and function remain the most important indi-
cation for a cardiac study [6]. LA segmentation in 3D US has not received much
attention, apart from commercially available methods, which were also success-
fully validated against the gold standard CMR and CCT [3,10]. Almeida et
al. [1] adapted a segmentation framework for LV, based on B-spline explicit
active surfaces. Those methods, however, require more or less manual inter-
action. Recently, fully automatic segmentation of the left heart was validated
against 2D and 3D echocardiography, as well as CCT [4].

Convolutional neural networks (CNN) and their special architectures of fully
convolutional networks (FCN) have successfully been applied to the problem of
medical image segmentation. Those networks are trained end-to-end, process the
whole image and perform pixel-wise classification. The V-Net extends this idea
to volumetric image data and enables 3D segmentation with the help of spatial
convolutions, instead of processing the volumes slice-wise [8].

Automated segmentation in cardiac US images is challenging, due to arti-
facts caused by respiratory motion, shadows or signal-dropouts. Including shape
priors in this task can help algorithms to yield more accurate and anatomically
plausible results. Oktay et al. [9] introduced a way to incorporate such a prior
with the help of an autoencoder network, that leads segmentation masks to
follow an underlying shape representation.

Image data might be different (e.g with respect to resolution, contrast), due
to varying imaging protocols and device manufacturers [2,5]. Although the seg-
mentation task is equivalent, neural networks perform poorly when applied to
data that was not available during training. Generating ground truth maps and
retraining a new model for each domain is not a scalable solution. The prob-
lem of models to generalize to new image data can be approached by domain
adaptation. Kamnitsas et al. [5] successfully introduced the application of unsu-
pervised domain adaptation for different MRI databases, when an adversarial
neural network was influencing the feature maps of a CNN, which was employed
for a segmentation task.
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Fig. 2. Overview of the combined architecture: Image data Xi is processed by V-
Net [8]. Lseg is calculated from the resulting segmentation Ŷi and the ground truth
Yi. Additionally, Ŷi and Yi are encoded (E) to get the shape constraint. An optional
number of feature maps, based on Xi are extracted from V-Net to be processed in
the classifier (C), which predicts a domain d̂i. Cross-entropy between d̂i and the real
domain di determines the adversarial loss.

In this work, LA segmentation in 3D US volumes is performed with the help
of neural networks. For the volumetric segmentation, V-Net will be trained,
combined with additional losses, taking into account the geometrical constraint
introduced by the shape of the LA and the desired ability to generalize to dif-
ferent US devices and settings.

2 Methodology

Our framework, as depicted in Fig. 2, consists of three existing methods; 3D
Fully Convolutional Segmentation Network [8], Anatomic Constraint [9], and
Domain Adaptation [5]. Nevertheless, it is a novelty to model the solution in a
single framework, enabling analysis on the contribution of each element on the
primary segmentation task. Further, the domain adaptation method has been
leveraged to a 3D FCN segmentation framework, and applied successfully to the
LA, showing a statistical significant improvement, as reported in Sect. 3.

Segmentation. For the segmentation task, we employ V-Net [8] as a 3D FCN,
which processes an image volume of size n, Xi = {x1, ..., xn}, xi ∈ X and yields
a segmentation mask Ŷi = {ŷ1, ..., ŷn}, ŷi ∈ Ŷ in the original resolution. X
represents the feature space of US acquisitions and Ŷ describes the probability
of a voxel belonging to the segmentation.

The objective function of V-Net is adapted to the segmentation task. It is
based on the Dice coefficient (Eq. 1), taking into account the possible imbalance
of foreground to background, alleviating the need to re-weight samples.

Lseg = 1 − 2 · ∑
i yi · ŷi∑

i y
2
i +

∑
i ŷ
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with ŷi being the prediction and yi the voxels of the ground truth Yi from the
binary distribution Y.

Shape Prior. Incorporation of the shape prior to help the segmentation task is
realized by training an autoencoder network on the segmentation ground truth
masks Y . The encoder reduces the label to a latent, low resolution represen-
tation E(Yi) and the decoder tries to retrieve the original volume Yi. Due to
the resolution reduction of the encoder, the shape information is encoded in a
compact fashion [9].

During training, the output of the segmentation network Ŷi is passed to the
encoder, along with the ground truth label Yi. Based on a distance metric d(·,·),
a loss between the latent codes of both inputs is calculated as

Lenc = d(E(Yi), E(Ŷi)). (2)

The gradient is then back-propagated to the segmentation network.

Domain Adaptation. When a network is trained on one type of data XS

(source domain) and evaluated on another XT (target domain), the performance
is poor in most cases. Domain invariant features are desired to make the segmen-
tation network perform well on different data sets. Kamnitsas et al. [5] propose
an approach to generate domain invariant features to increase a networks gen-
eralization capability.

Processing an image volume in a CNN yields a latent representation hl(Xi)
after convolutional layer l. If the network is not domain invariant, those feature
maps contain information about the data type (source or target domain). The
idea to solve this issue, is to train a classifier C, which takes feature maps of
the segmentation network as input and returns whether the input data was from
source (XS) or target (XT ) domain: C(hl(Xi)) = d̂i ∈ {S, T}. The accuracy of
this classifier is an indicator of how domain invariant the features are.

Combination. The ideas introduced in the previous sections are combined to
exploit the advantages of the individual approaches (Fig. 2). The loss of the
domain classifier is used as an adversarial loss term, since the goal of the seg-
mentation network is to lower the classification accuracy (i.e maximize its loss).
The inability of the classifier to tell, which type of data was segmented means
that the feature maps are domain invariant. At the same time, Lseg and Lenc

should be minimized. With Ladv as the binary cross entropy loss of the classifier
C, this yields the following combined loss function:

L = Lseg + λenc · Lenc − λadv · Ladv (3)

3 Experiments and Results

To evaluate the influence of different loss terms, we apply it to 3D Ultrasound
data to perform end-systolic LA segmentation. The network is trained with
images and labels from one device and tested on different devices.
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Table 1. Data device and set distribution. iE33 datasets are only used for evalua-
tion. Resolutions are equidistant. Resolution and opening angles of Ultrasound devices
(azimuth & elevation) shown as: mean ± standard deviation.

Property EPIQ 7C Vivid E9 iE33

Train/val/test 33/7/27 39/8/32 0/0/15

Resolution (mm/voxel) 0.95 ± 0.10 0.95 ± 0.10 0.96 ± 0.11

Azimuth (deg) 87.1 ± 4.7 47.3 ± 10.4 80.2 ± 0.0

Elevation (deg) 78.2 ± 0.1 47.4 ± 10.5 91.6 ± 0.0

Dataset. The data available for this work are 3D transthoracic echocardiog-
raphy (TTE) examinations taken from clinical routine, which brings variations
from differences in US imaging devices, protocols (resolution, opening angle) and
patients (healthy, abnormal), raising the necessity of our proposed framework
(Table 1). Multiple international centers contributed to a pool of 161 datasets,
containing the LA ground truth segmentation in the entire recorded heart cycle,
with the relevant phases for LA functionality (end-diastole, end-systole and pre-
atrial contraction) identified.

Acquisition was performed with systems from GE (Vivid E9, GE Vingmed
Ultrasound) and Philips (EPIQ 7C and iE33, Philips Medical Systems), each
equipped with a matrix array transducer. Since there are only 15 datasets for
device iE33, those examinations are not used for training, only for evaluation.
The data is down-sampled, preserving angles and ratios, by zero padding (cf.
Fig. 1), to enable processing of the entire volumes.

Implementation. Network architectures are implemented using the Tensor-
Flow1 library (version 1.4) with GPU support. For our approach, the V-Net
architecture is adapted, such that volumes of size 64 × 64 × 64 can be pro-
cessed. The autoencoder network architecture is inspired from the one proposed
in [9]. Feature maps from different levels and sizes are extracted from V-Net to
be processed in the classifier (Fig. 2). By (repeated) application of convolutions
of filter size 2 with stride 2, the feature maps are brought to the V-Net valley
size (4 × 4 × 4), so they can be concatenated along the channel dimension.

Training Details. The autoencoder network is trained before the combined
training procedure, to obtain a meaningful latent representation for the shape
prior. In the following training stages, the parameters of this network are frozen.
The segmentation network is shortly pre-trained, as well as the classifier to
introduce stability in the combined training and it can focus on realizing the
scenario defined by the settings of λenc and λadv. Feature maps L0, L2, M, R2
and R0 of the segmentation network are extracted for the classifier.

1 https://www.tensorflow.org/.

https://www.tensorflow.org/
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Table 2. Training procedure details. Each training uses a learning rate decay of 0.99
after each epoch and a batch size of 4. X = X S ∪ X T , d : domain labels.

# Name (parameters) Optimizer Learning rate Weight reg. Epochs Data Label

1 Autoencoder (θae) Momentum β:0.9 5 · 10−4 0.1 100 YS YS

2 Segmentation (θseg) Adam β1: 0.99, β2: 0.999 1 · 10−5 5 · 10−4 50 XS YS

3 Classifier (θadv) SGD 5 · 10−5 1 · 10−5 15 X d

4 Combination 3 (θseg) Momentum β:0.99 1 · 10−5 5 · 10−4 100 XS YS ,d

Classifier (θadv) SGD 5 · 10−5 1 · 10−5 X d

The combined training procedure starts by adding Lenc, for incorporation of
the shape prior to the segmentation loss Lseg. Adversarial influence begins after
10 epochs of combined training, linearly increasing λadv until it reaches its max-
imum of 0.001 after another 10 epochs. While the combined training exclusively
adjusts the parameters of the segmentation network θseg, the classifier param-
eters θadv are continued to be trained in parallel to retain a potent adversarial
loss term. A training overview is given in Table 2.

Evaluation. The segmentation network returns a volume Ŷi of probabilities for
the voxels to belong to the foreground, i.e the segmentation of the LA. The
threshold for the cutoff probability to obtain a binary segmentation mask is
determined by the best Dice coefficient on the validation set, from which the
biggest connected component is selected as the final LA segmentation.

Segmentation metrics [1,9] are reported in Table 3 for the recommended
phase of LA segmentation (end-systole ES [7]). We refer to the V-Net archi-
tecture with the additional loss term Lenc, calculated from the L2-distance
(d(p, q) = ‖p − q‖2

2), as geometry agnostic CNN GAL2. To investigate the influ-
ence of a different distance metric, GAACD uses the angular cosine distance, as
it was proposed in [2] (ACD, d(p, q) = 1 −

∑
i pi·qi

‖p‖2·‖q‖2
). Our domain and geometry

agnostic CNN DGA leverages the better performing distance metric (ACD, based
on test results) with the adversarial loss Ladv. We define statistical significance
based on the paired two-sample t-test on a 5% significance level.

When training on EPIQ 7C, V-Net performs better than the other architec-
tures on the same device. However, those margins are not statistically significant
(MSD: p = 0.65, HD: p = 0.24, DC: P = 0.66), compared to DGA. The increased
performance of DGA compared to V-Net and ACNN is significant with respect
to all metrics. Vivid E9 training yields V-Net with the best performance on
the same device, with statistical significance on all metrics. DGA is significantly
outperforming V-Net on EPIQ 7C in terms of MSD and HD. No significant
differences are observable on the evaluation of device iE33. Independent of the
distance metric utilized, an improvement in generalizability is observable com-
pared to V-Net when the shape prior is included (GAL2 & GAACD).
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Table 3. Results for ES LA segmentation. Baseline ACNN and V-Net results are
reported. GAL2 : λadv = 0, d: L2-distance. GAACD : λadv = 0, d: ACD. DGA: λadv =
0.001, d: ACD. GAL2,GAACD & DGA: λenc = 0.001. Format: mean ± std.

Training Test V-Net [8] ACNN [9] GAL2 GAACD DGA

Mean Surface Distance (MSD)

EPIQ 7C EPIQ 7C 1.16±0.88 1.35 ± 1.19 1.26 ± 0.69 1.27 ± 0.69 1.21 ± 0.60

Vivid E9 3.56 ± 1.71 10.67 ± 7.29 3.87 ± 3.06 2.42 ± 1.32 2.01±1.63

iE33 1.44 ± 0.77 1.38±0.40 2.33 ± 2.38 1.94 ± 1.49 1.44 ± 0.35

Vivid E9 EPIQ 7C 2.87 ± 1.53 4.39 ± 1.33 2.12 ± 0.96 1.87 ± 0.96 1.59±1.04

Vivid E9 0.94±0.59 1.57 ± 0.87 1.18 ± 0.38 1.12 ± 0.37 1.18 ± 0.37

iE33 4.72 ± 4.86 3.28 ± 2.22 4.18 ± 3.36 3.18 ± 2.88 2.62±1.46

Hausdorff Distance (HD)

EPIQ 7C EPIQ 7C 4.46±2.73 5.52 ± 3.15 5.51 ± 2.31 5.33 ± 2.07 4.92 ± 1.60

Vivid E9 7.66 ± 2.94 16.87 ± 8.92 8.21 ± 5.06 5.79 ± 2.21 5.46±3.36

iE33 4.06±1.21 5.03 ± 1.39 5.60 ± 2.86 4.98 ± 2.02 4.70 ± 0.91

Vivid E9 EPIQ 7C 10.82 ± 3.80 13.63 ± 2.87 8.09 ± 2.88 7.31 ± 2.51 5.47±2.45

Vivid E9 3.67±2.29 7.09 ± 3.21 5.41 ± 1.84 5.05 ± 1.70 5.14 ± 1.26

iE33 9.52 ± 6.44 11.60 ± 3.72 9.08 ± 3.64 7.13 ± 3.49 6.63±2.25

Dice Coefficient (DC)

EPIQ 7C EPIQ 7C 0.75±0.17 0.69 ± 0.20 0.74 ± 0.10 0.73 ± 0.11 0.74 ± 0.10

Vivid E9 0.10 ± 0.21 0.15 ± 0.25 0.33 ± 0.27 0.32 ± 0.26 0.55±0.23

iE33 0.57 ± 0.31 0.64 ± 0.11 0.55 ± 0.19 0.59 ± 0.19 0.67±0.08

Vivid E9 EPIQ 7C 0.56 ± 0.15 0.32 ± 0.18 0.59 ± 0.14 0.62 ± 0.17 0.63±0.17

Vivid E9 0.80±0.08 0.69 ± 0.11 0.73 ± 0.07 0.74 ± 0.08 0.73 ± 0.09

iE33 0.49 ± 0.37 0.50±0.16 0.38 ± 0.25 0.46 ± 0.27 0.46 ± 0.19

4 Discussion and Conclusion

While V-Net performs well on the task of LA segmentation, the ability to gen-
eralize to new domains is achieved by the introduction of a shape prior and the
adversarial loss, as shown in the results. Including the shape prior boosts the
segmentation performance on unseen devices and theoretically leads to a geo-
metrically plausible segmentation in case of image artifacts. We ensure a potent
classifier by training it in parallel to the DGA architecture. Thus, it can detect
domain-specific features throughout the training procedure. The distance metric
for the geometrical constraint is an interesting subject to further investigate, as
well as extracting different V-Net-layers for processing in the classifier network.
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