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Abstract. Quantitative assessment of left ventricle (LV) function from cine
MRI has significant diagnostic and prognostic value for cardiovascular disease
patients. The temporal movement of LV provides essential information on the
contracting/relaxing pattern of heart, which is keenly evaluated by clinical
experts in clinical practice. Inspired by the expert way of viewing Cine MRI, we
propose a new CNN module that is able to incorporate the temporal information
into LV segmentation from cine MRI. In the proposed CNN, the optical flow
(OF) between neighboring frames is integrated and aggregated at feature level,
such that temporal coherence in cardiac motion can be taken into account during
segmentation. The proposed module is integrated into the U-net architecture
without need of additional training. Furthermore, dilated convolution is intro-
duced to improve the spatial accuracy of segmentation. Trained and tested on
the Cardiac Atlas database, the proposed network resulted in a Dice index of
95% and an average perpendicular distance of 0.9 pixels for the middle LV
contour, significantly outperforming the original U-net that processes each frame
individually. Notably, the proposed method improved the temporal coherence of
LV segmentation results, especially at the LV apex and base where the cardiac
motion is difficult to follow.
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1 Introduction

1.1 Left Ventricle Segmentation

Cardiovascular disease is a major cause of mortality and morbidity worldwide.
Accurate assessment of cardiac function is very important for diagnosis and prognosis
of cardiovascular disease patients. Cine magnetic resonance imaging (MRI) is the
current gold standard to assess the cardiac function [1], covering different imaging
planes (around 10) and cardiac phases (ranging from 20 to 40).

The large number of total images (200–400) poses significant challenges for
manual analysis in clinical practice, therefore computer-aided analysis of cine MRI has
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been actively studied for decades. Most traditional methods in literature are based on
dedicated mathematical models of shape and intensity [2]. However, the substantial
variations in the cine images, including the acquisition parameters, image quality, heart
morphology/pathology, etc., all make it too challenging, if not impossible, for tradi-
tional image analysis methods to reach a clinically acceptable balance of accuracy,
robustness, and generalizability. As such, in current practice, the analysis of cine
images still involves significant manual work, including contour tracing, or initial-
ization and correction to aid semi-automated computer methods.

Current development of deep Convolutional Neural Networks (CNN) has made
revolutionary improvement on many medical image analysis problems, including
automated cine MRI analysis [3, 4]. In most of the CNN-based framework for cine
MRI, nevertheless, the segmentation problem is still formulated as learning a label
image from a given cine image, i.e. each frame is individually processed and there is no
guarantee of temporal coherence in the segmentation results.

1.2 Our Motivation and Contribution

This is in contrast to what we have observed in clinical practice, as clinical experts
always view the cine MRI as a temporal sequence instead of individual frames, paying
close attention to the temporally-resolving motion of the heart. Inspired by the expert
way of view cine MRI, we aim to integrate the temporal information to guide and
regulate LV segmentation, in an easily interpretable manner.

Between temporally neighboring frames, there are two types of useful information:
(1) Difference: the relative movement of the object between neighboring frames,
providing clues of object location and motion. (2) Similarity: sufficient coherence exists
between temporally neighboring frames, with the temporal resolution of cine set to
follow cardiac motion. In this work, we proposed to use optical flow to extract the
object location and motion information, while aggregating such information over a
moving time window to enforce temporal coherence. Both difference and similarity
measures were formulated into one module, named “optical flow feature aggregation
sub-network”, which is integrated into the U-net architecture. Compared to the pre-
vailing recurrent neural network (RNN) applied to temporal sequences [4], our method
eliminates the need of introducing massive learnable RNN parameters, while pre-
serving the simplicity and elegancy of U-net. In relatively simple scenarios like cine
MRI, our proposed method has high interpretability and low computation cost.

2 Method

2.1 Optical Flow in Cine MRI

Given two neighboring temporal frames in cine MRI, the optical flow field can be
calculated to infer the horizontal and vertical motion of objects in image [4], by the
following equation and constraint:
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where Vx, Vy are the velocity components of the pixel at location x and y in image I. As
the major moving object in the field of view, the optical flow provides essential
information on the location of LV, as well as its mode of motion, as illustrated in
Fig. 1, in which the background is clearly suppressed.

2.2 Optical Flow Feature Aggregation

We propose to integrate the optical flow into the feature maps, which are extracted by
convolutional kernels:

mj!i ¼ I mi; Oj!i
� � ð3Þ

where I �ð Þ is the bilinear interpolation function as is often used as a warp function in
computer vision for motion compensation [5], mi represents the feature maps of frame i,
Oj!i is the optical flow field from frame j to frame i, and mj!i represents the motion-
compensated feature maps.

We further aggregated the optical flow information over a longer time span in the
cardiac cycle. The aggregated feature map is defined as follows:

�mi ¼
Xj¼iþ k

j¼i�k
wj!imj!i ð4Þ

Fig. 1. Illustration of optical flow in cine MRI between temporal frames. The flow field (lower
panel) reflects the local displacement between two frames (upper panel).
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where k denotes the number of temporal frames before and after the target frame.
Larger k indicates higher capability to follow temporal movement but heavier com-
putation load. We used k ¼ 2 as an empirical choice to balance computation load and
capture range. The weight map wj!i measures the cosine similarity between feature
maps mj and mi at all x and y locations, defined as:

wj!i ¼ mj � mi

mj

�� ����mi

�� ð5Þ

The feature map mi and mj contain all channels of features extracted by convolu-
tional kernels (Fig. 2), which represent low-level information of the input image, such
as location, intensity, and edge. Computed over all channels, wj!i describes local
similarity between two temporally neighboring frames. By introducing the weighted

Fig. 2. The proposed OF-net, including three new characteristics: (1) the optical flow feature
aggregation sub-network, (2) res-block, and (3) dilated convolution.
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feature map, we assign higher weights on locations with little temporal movement for
coherent segmentation, while lower weights on locations with larger movement to
allow changes.

2.3 Optical Flow Net (OF-net)

The proposed optical flow feature aggregation is integrated into the U-net architect,
which we name as optical flow net (OF-net). The OF-net consists of the following new
characteristics compared to the original U-net:

Optical Flow Feature Aggregation Sub-network: The first part of the contracting
path is made of a sub-network of optical flow feature aggregation described in
Sects. 2.1 and 2.2. With this sub-network embedded, the segmentation of an individual
frame takes into consideration information from neighboring frames, both before and
after it, and the aggregation acts as a “memory” as well as a prediction. The aggregated
feature maps are then fed into the subsequent path, as shown in Fig. 2.

Dilated Convolution: The max-pooling operation reduces the image size to enlarge
the receptive field, causing loss of resolution. Unlike in the classification problem,
resolution can be important for segmentation performance. To improve the LV seg-
mentation accuracy, we propose to use dilated convolution [6] to replace part of the
max-pooling operation. As illustrated in Fig. 3, dilated convolution enlarges the
receptive field by increasing the size of convolution kernels. We replaced max-pooling
with dilated convolution in 8 deep layers as shown in Fig. 2.

Res-Block: To mitigate the vanishing gradient problem in deep CNNs, all blocks in
the U-net (i.e. a convolutional layer, a batch normalization layer, and a ReLU unit)
were updated to res-block [7], as illustrated in Fig. 2.

The proposed OF-net preserves the U-shape architecture, and its training can be
performed the same way as U-net without need of joint-training, as optical flow
between MRI frames only need to be computed once. Simplified algorithm is sum-
marized in Algorithm 1. Nfeature, Nsegment are sub-networks of feature extractor and
segmentation, respectively. P �ð Þ denotes computation of optical flow.

Fig. 3. Dilated convolution by a factor of 2. Left: the normal convolutional kernel, right: the
dilated convolution kernel, which expands the receptive field by a factor of 2 without adding
more parameters. Blue indicates active parameters of the kernel while white are inactivated, i.e.
set to zero.
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3 Experiments and Results

3.1 Data and Ground Truth

Experiments were performed on the short-axis steady-state free precession (SSFP) cine
MR images of 100 patients with coronary artery disease and prior myocardial infarction
from the Cardiac Atlas database [8]. A large variability exists in the dataset: the MRI
scanner systems included GE Medical Systems (Signa 1.5T), Philips Medical Systems
(Achieva 1.5T, 3.0T, and Intera 1.5T), and Siemens (Avanto 1.5T, Espree 1.5T and
Symphony 1.5T); image size varied from 138 � 192 to 512 � 512 pixels; and the
number of frames per cardiac cycle ranged from 19 to 30.

Ground truth annotations of the LV myocardium and blood pool in every image
were a consensus result of various raters including two fully-automated raters and three
semi-automated raters demanding initial manual input. We randomly selected 66
subjects out of 100 for training (12,720 images) and the rest for testing (6,646 images).
All cine MR and label images were cropped at the center to a size of 128 � 128. To
suppress the variability in intensity range, each cine scan was normalized to a uniform
signal intensity range of [0, 255]. Data augmentation was performed by random
rotation within [−30°, 30°], resulting in 50,880 training images.
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3.2 Network Parameters and Performance Evaluation

We used stochastic gradient descent optimization with an exponentially-decaying
learning rate of 10�4 and a mini-batch size of 10. The number of epochs was 30. Using
the same training parameters, 3 CNNs were trained: (1) the original U-net, (2) the OF-
net with max-pooling, (3) the OF-net with dilated convolution. The performance of LV
segmentation was evaluated in terms of Dice overlap index and average perpendicular
distance (APD) between the ground truth and CNN segmentation results. Since LV
segmentation is known to have different degree of difficulty at apex, middle, and base,
we evaluated the performance in the three segments separately.

3.3 Results

The Dice and APD of the three CNNs are reported in Table 1. It can be seen that the
proposed OF-net outperformed the original U-net at all segments of LV (p < 0.001),
and with the dilated convolution introduced, the performance is further enhanced
(p < 0.001).

Some examples of the LV segmentation results at apex, middle, and base of LV are
shown in Fig. 4. It can be observed from (a)–(c) that the proposed method is able to
detect a very small myocardium ring at the apex which may be missed by the original
U-net. From (g)–(i) it is seen that the OF-net eliminates localization failure at the base.
In the middle slices (d)–(f), the OF-net also produced smoother outcome than the
original U-net which processes each slice individually. The effect of integrating tem-
poral information is better illustrated in Fig. 5, in which we plotted the myocardium
(upper panel) and blood pool (lower panel) area, as determined by the resulting
endocardial and epicardial contours, against frame index in a cardiac cycle. It can be
observed that the results produced by OF-net is smoother and closer to the ground truth
than those produced by U-net, showing improved temporal coherence of segmentation.

In Fig. 6, we illustrate the mechanism how aggregated feature map can help pre-
serve the temporal coherence: the 14th channel in the sub-network is a localizer of LV.
While localization of LV in one frame can be missed, the aggregated information from
neighboring frames can correct for it and lead to coherent segmentation.

Table 1. Comparison of performance of the three CNNs: (1) the original U-net, (2) the OF-net
with max-pooling, (3) the OF-net with dilated convolution. Performance is differentiated at apex,
middle, and base of LV. Paired t-test is done comparing (2) and (1), (3) and (2).

Apex Middle Base

Dice
(%)

APD
(pixel)

p value Dice
(%)

APD
(pixel)

p value Dice
(%)

APD
(pixel)

p value

U-net 73.3 ± 4.3 1.67 ± 0.25 91.2 ± 4.0 1.21 ± 0.16 82.4 ± 4.6 1.41 ± 0.19

OF-net (max-
pooling)

81.9 ± 3.2 1.19 ± 0.18 <0.0001 92.3 ± 3.6 0.95 ± 0.11 <0.0001 86.3 ± 2.9 0.99 ± 0.14 <0.0001

OF-net
(dilated conv)

84.5 – 3.7 1.04 – 0.11 <0.0001 94.8 – 3.2 0.90 – 0.09 <0.0001 89.3 – 2.5 0.94 – 0.12 <0.0001
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Fig. 4. Examples of temporal frames at different locations: apex (a)–(c), middle (d)–(f), and base
(g)–(i). From top to bottom, the contours are delineated from the ground truth, U-net, and the
proposed OF-net, respectively.

Fig. 5. Examples of myocardium (upper) and blood pool (lower) area in a cardiac cycle,
estimated from the ground truth, U-net, and OF-net, at apex, middle, and base.
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Fig. 6. Effect of feature aggregation. In the middle frame, the feature map related to “LV
location” did not activate. The proposed feature aggregation could retrieve the location of LV
based on temporally neighboring slices.

4 Conclusion

We have proposed an OF-net for fully automated segmentation of LV from cine MRI.
The network integrates temporal information to imitate the expert way of viewing cine.
Evaluated on the Cardiac Atlas database, the method outperformed the original U-net,
producing more accurate and temporally-coherent LV segmentation.
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