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Abstract. In this paper, we present a learning based, registration free,
atlas ranking technique for selecting outperforming atlases prior to image
registration and multi-atlas segmentation (MAS). To this end, we intro-
duce ensemble hashing, where each data (image volume) is represented
with ensemble of hash codes and a learnt distance metric is used to obvi-
ate the need for pairwise registration between atlases and target image.
We then pose the ranking process as an assignment problem and solve it
through two different combinatorial optimization (CO) techniques. We
use 43 unregistered cardiac CT Angiography (CTA) scans and perform
thorough validations to show the effectiveness and superiority of the pre-
sented technique against existing atlas ranking and selection methods.

1 Introduction

In atlas-based segmentation, the goal is to leverage labels in a single fixed (tem-
plate) atlas for segmenting a target image. The assumption that the spatial
appearance of anatomical structures remains almost the same across and within
databases is not always held, which results in systematic registration error prior
to label propagation. Alternatively, in MAS [2,15], multiple atlases are deployed,
encompassing larger span of anatomical variabilities, for compensating large reg-
istration errors that may be produced by any single atlas and increasing per-
formance. Thus, the challenge is to optimally select a number of outperforming
atlases without compromising segmentation accuracy and computational speed.

For this reason, different atlas selection methods have been proposed based
on (1) image similarity between atlases and target image, defined over original
space or manifolds [1,11,17], (2) segmentation precision [7], and (3) features
representations for supervised learning [12]. Although the aim is to reduce the
number of required pairwise registrations between query image and less applica-
ble (dissimilar) atlases, all above mentioned selection techniques themselves rely
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Fig. 1. Overall schematic of proposed method. Training: The VGG-convolutional neu-
ral network (CNN) [14] is used for feature extraction from 3D atlases (a) and training
of mHF Hf (b). The feature space is parsed and hashed CHf (f) by preserving similar-
ity among each and every organ (c). Retrieval: The VGG-CNN features are extracted
from query (Xq) and fed to the learnt mHF to generate ensemble hash codes CHX (Xq).
The CO is then used as similarity S measure for retrieving N closest matches (d).

on non-rigid registration as a preprocessing step. In fact, at the first glance, reg-
istration seems to be inevitable since the selection strategy is often established
on the premise of capturing similarity between pairwise images.

This motivated us to investigate potential extension of hashing forests [3] as
an alternative solution where similarity can be measured within a registration
free regime. The rationale behind the use of hashing forests is further substanti-
ated by [8,10] where the former uses forests for the task of approximate nearest
neighbor retrieval and the latter introduced a novel training scheme with guided
bagging both applied for segmentation of CT images. Although they can be
utilized for the purpose of label propagation as part of MAS, however, their
direct generalizations to atlas selection are doubtful due to lack of ranking met-
ric and strategy. In essence, we propose similar idea of preserving similarity in
local neighborhoods but what makes our method suitable for atlas ranking is
inclusion of hashing in neighborhood approximation, which serves as a basis for
defining a definitive metric for ranking through CO techniques [13].

Our work is fundamentally different from [3] from two main perspectives.
First, unlike [3], where each data point is represented by a single class sample or
hash code (i.e. organ type, Fig. 1(c)) in hashing space, we parse the hashing space
with ensemble of codes derived from features representing every organ within the
volumetric CT images, Fig. 1(d). Secondly, due to ensemble representations, the
retrieval/ranking task becomes a matching or assignment problem in Hamming
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space that we solve through CO techniques. We use KuhnMunkres (also known as
Hungarian) algorithm [9] as well as linear programming (LP) to rank and select
the closest atlases to the query. We perform similar validation scheme to [11]
and use normalized mutual information (NMI) as similarity measure for atlas
selection. Finally, we quantify the overall performance through MAS algorithm
proposed by [15].

Our contributions include: (1) extending [3] for volumetric data hashing and
introducing the concept of ensemble hashing for the first time, (2) employing
hashing for atlas selection and ranking as part of MAS, (3) eliminating pairwise
registration, which makes atlas selection extremely fast, and (4) deploying CO
as a solution to atlas ranking problem that will also be shown to be a viable
solution for similarity matching in the context of ensemble hashing.

2 Methodology

2.1 Volumetric Ensemble Hashing Through mHF

Figure 1 shows the schematic of proposed method and we refer readers to [3] for
detailed description about mHF. For a given subset of training atlases XN =
{xv : R

3 → R}Nv=1 and corresponding labels YN = {yv : R
3 → N}Nv=1 we

perform random sampling with minimum rate of fsmin
to extract features from

data represented in three orthogonal planes centered at (i, j, k) spatial coordinate
using VGG network F (i,j,k)

N = {f (i,j,k)v ∈ R
d}Nv=1. For simplicity, XN , xv, f

(i,j,k)
v

are used interchangeably with X , x, f , respectively throughout paper. An n bit
hash function hf is defined that maps R

d to n-dimensional binary Hamming
space hf : R

d → {1, 0}n with Chf
(f) = hf (f) codeword. The hashing forest

comprises of K independently hashing trees Hf = {h1
f , · · · , hK

f } that encodes
each sample point f from R

d to nK-dimensional Hamming space {1, 0}nK such
that Hf : f → CHf

(f) = Ch1
f
(f), · · · , ChK

f
(f). Given Hf , we encode all organs in

training atlases X ∈ R
d×N×o as Hf : F → CHf

(F) = Ch1
f
(F), · · · , ChK

f
(F) ∈

{1, 0}nK×N×o, where o is the total numbers of organs.
The mHF parses and hashes the latent feature space while preserving simi-

larity among organs, Fig. 1(c). For ensemble representation of each volume, we
incorporate the coordinates of sampling points (i, j, k) into hashing scheme as
follows:

HX :
⋃

(i,j,k)

f (i,j,k)N

︸ ︷︷ ︸
XN

→
⋃

(i,j,k)

CHf

(
f (i,j,k)N

)
=

⋃

(i,j,k)

{
Ch1

f

(
f (i,j,k)N

)
, · · · , Chk

f

(
f (i,j,k)N

)}

︸ ︷︷ ︸
CHX (XN )

(1)
where CHX (XN ) ∈ {1, 0}(nk×N×ns) and ns is the number of sampling points.

2.2 Retrieval Through Combinatorial Optimization (CO)

In classical hashing based retrieval methods, given a query xq, the inter-sample
similarity S could be computed as pairwise Hamming distance DH between
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Fig. 2. Distance matching illustration between Xv and Xq volumes represented by 4
and 5 sampling points, respectively. The top matches are depicted by thicker edges (a).
The MAS performance using different atlas ranking techniques. The average Dice value
is reported over all organs when N = [1:9, 10:2:20, 25, 30, 35, 42] (b). The highlighted
area covers number of atlases where mHF-LP outperforms or its performance almost
becomes equal to NMI (N= 14).

the hash codes of query CH(xq) and each sample in training database CH(xv)
through logical xor as Sxqv

= DH (xq,xv) = CH (xq) ⊕ CH (xv) ∈ N. The
samples whose hash codes fall within the Hamming ball of radius r centered
at CH (xq) i.e. DH (xq,xv) ≤ r are considered as nearest neighbors. However,
for our problem, the pairwise Hamming distance between hash codes of two
volumes is SXqv

= DH (Xq,Xv) = CH (Xq) ⊕ CH (Xv) ∈ R
2 and finding the

nearest neighbors seems intractable.
Both volumes Xv and Xq are represented by nv

s × l and nq
s × l features in

latent space, resulting in nv
s and nq

s hash codes, where nv
s and nq

s are number of
sampling points, Fig. 2(a) (nv

s = 4, nq
s = 5). The Similarity SX can be posed as

multipartite Hamming distance matching problem by resolving correspondence
between pairwise Hamming tuples of length 2. To this end, we construct set of
nodes in each volume, where each node comprises of position of sampling point
(i, j, k) and corresponding hash code. The problem now is to find a set of edges
that minimizes the matching cost (total weights), which can be tackled by CO
methods like assignment problem [4,5] in 2-D Hamming space.

2.3 Similarity Estimation Through Assignment Problem with
Dimensionality Reduction

Motivated by [5], we assign costs cqv to pairwise Hamming distances SXqv
, which

represents the likelihood of matching sampling data in two volumes. The overall
cost shall be minimized with respect to cqv as follows:

min
∑

q

∑

v

cqvSxqv
s.t.

⎧
⎨

⎩

∑
q cqv = 1∀q∑
v cqv = 1∀v

cqv ∈ [0, 1]
(2)
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Table 1. The MAS results (Dice: mean +/− Std) for all organs using mHF-Hun, mHF-
LP, and NMI atlas selection techniques when N = [1:10, 12, 14] atlases are used.

Given nv
s and nq

s sampling points, (nv
s × nq

s)! solutions exist, which makes
computation of all cost coefficients infeasible as each volume is often represented
by 3000 sampling points, on average. To overcome this limitation, we will solve
the following LP problem that shares the same optimal solution [5]:

S̃Xqv
= min

∑

q

∑

v

cqvŜxqv
where Ŝxqv

=
{

Sxqv
if Sxqv

≤ η
∞ if Sxqv

> η
(3)

where η = 1
nq
s

∑
q Sxqv

. As a complementary analysis, we will solve the same
problem using Hungarian algorithm and refer readers to [9] (Table 1).

3 Experiments and Results

We compare our method against an atlas selection technique (baseline) similar
to [1]. The performance of each algorithm is evaluated by MAS with joint label
fusion employing [15]. Like [12], in our quantification, we use the Dice Similarity
Coefficient (DSC) between manual ground truths and automated segmentation
results. We also justify the need for our proposed ranking technique in MAS
against deep learning segmentation methods and deploy multi-label V-net [6].

3.1 Datasets

We collected 43 cardiac CTA volumes with labels for 16 anatomical struc-
tures including sternum(ST), ascending(A-Ao)/descending aorta(D-Ao), left(L-
PA)/right (R-PA)/trunk pulmonary artery(T-PA), aorta/arch(Ao-A)/root(Ao-
R), vertebrae(Ve), left(L-At)/right atrium(R-At), left(LV)/right ventricle(RV),
lLV myocardium(Myo), and superior(S-VC)/inferior vena cava(I-VC). Each
image has isotropic in-plane resolution of 1 mm2. The slice thickness varies
from 0.8 mm to 2 mm. All images are intensity equalized to eliminate inten-
sity variations among patients and then resampled to voxel size of 1.5 mm in all
dimensions.
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Fig. 3. The mHF-LP qualitative results. Query volume (top row) in axial, coronal, and
sagittal views (from left to right) and corresponding retrieve volumes in corresponding
views. The middle and bottom rows show the most similar and dissimilar cases (from
left to right), respectively (a). The 3D visualization of segmentation results for the
query volume (top) and corresponding manual ground truth (bottom) (b).

3.2 Validation Against Baseline

In this section, we validate the performance of the proposed hashing based
atlas ranking selection strategies (mHF-LP, described in Sect. 2.3, and mHF-
Hungarian (mHF-Hun)) on segmentation results against [1] where NMI is used
as similarity metric for atlas selection and registration. We use fsmin

= 50 and
resize each sampling voxel to 224 × 224 as an input to VGG network. We then
extract d = 4096 features from FC7 layer for training the mHF. The forest com-
prises of 16 trees with depth of 4 to learn and generate 64 bits hashing codes.

We indicate that the NMI atlas selection method requires deformable regis-
tration whereas neither mHF-LP nor mHF-Hun does. Once atlases are ranked
and selected using any approach, a global deformable registration is performed
as part of MAS. We perform 43-fold leave-one-out cross validation and train
models using all 16 labels (organs: ι = 1, · · · , 16). Figure 2(b) shows the aver-
age Dice values over all organs when N nearest atlases are selected using NMI,
mHF-LP, and mHF-Hun algorithms. To speed up experiments, we introduced
intervals while increasing N as the top similar cases weigh more in segmentation
performance. As seen, the mHF-LP outperforms up to N = 14 where its perfor-
mance equals the NMI (Dice = 80.66%). This is an optimal number of selected
atlases where only 1.22% of performance is compromised in contrast to the case
that we use all atlases (N = 42, Dice = 81.88%).

We performed an additional experiment by selecting atlases randomly and
repeated the experiment five times. The averaged results are shown in Fig. 2
(cyan graph). This substantiates that the performance of our proposed tech-
niques is solely depending on retrieval efficacy and not registration as part of
MAS. Looking at qualitative results demonstrated in Fig. 3, we can justify the
mHF-LP superior performance when a few atlases are selected (N ≤ 9). As we
can see, the top ranked atlases are the most similar ones to query and therefore
they contribute to segmentation significantly. As we further retrieve and add
more dissimilar atlases, the mHF-LP performance almost reaches a plateau.
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Fig. 4. The Dice segmentation results of all organs using MLVN with and without
smoothing in contrast to MAS algorithm with proposed atlas selection techniques and
NMI (baseline).

3.3 Validation Against Multi-label V-Net (MLVN)

We perform a comparative experiment to study the need for such atlas selec-
tion techniques as part of MAS process in contrast to CNN segmentation
methods. We performed volumetric data augmentation through random non-
rigid deformable registration during training. The ratio of augmented and non-
augmented data was kept 1:1. Due to high memory requirements in 3D convo-
lution, the input image is down-sampled to 2 mm× 2 mm × 3.5 mm, and a sub-
image of size 128×192×64 is cropped from the center of the original image and
fed to the network. For segmentation, the output of the MLVN [6] is up-sampled
to the original resolution padded into the original spatial space. We preserve the
same network architecture as [6] and implemented the model in CAFFE.

Figure 4 demonstrates the results of MLVN segmentation with and without
smoothing on 4-fold cross validation along with mHF-LP, mHF-Hun, and NMI.
As expected, we obtained better results with smoothing. We performed the t-
test and found significant difference between generated results by MLVN and
the rest (p > 0.05). The performance of MLVN is fairly comparable with the
rest excluding the results for L-PA and Ao-A. Both are relatively small organs
and may not be presented in all volumes, therefore, we could justify that the
network has not seen enough examples during training despite augmentation.

3.4 Discussion Around Performance and Computational Speed

The MLVN is very fast at testing/deployment stage, particularly when per-
formed on GPU. It takes less than 10 s to segment a 3D volume on one TITAN
X GPUs with 12 GB of memory. However, The averaged segmentation perfor-
mance ( ¯DiceMLVN+smoothing = 0.7663) was found to be smaller than the rest
( ¯DicemHF-LP = 0.7969, ¯DicemHF-Hun = 0.7909, ¯DiceNMI = 0.7921). The MAS
generates more accurate results but at the cost of high computational burden
due to the requirement for pairwise registrations and voxel-wise label fusion, of
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which the latter is not the focus of this work. We refer readers to [16] where the
trade-off between computational cost and performance derived by registration
has been thoroughly investigated.

We parallelized the pairwise registrations between atlases and deployed the
MAS on Intel(R) Xeon(R) CPU E5-2620 v2 with frequency of 2.10 GHz. In the
NMI based atlas selection technique, each deformable registration took about
55 s on 3 mm3 resolution. In contrast, solving the LP problem took only 10 s.
By looking at Fig. 2, using N = 14, where we achieve reasonbaly good seg-
mentation performance (Dice = 80.66%), we can save up to 14 × 45 = 630 s.
The computational speed advantage of proposed method can be more appreci-
ated in presence of large atlases especially when at least equal performance is
achievable. Moreover, in the presence of limited data, we can achieve reason-
ably good segmentation performance using MAS algorithm with ranking, which
seems very challenging for CNNs as they are greatly depending on availability
of large amount of training data.

4 Conclusions

In this paper, for the first time, we proposed a hashing based atlas rank-
ing and selection algorithm without the need for pairwise registration that is
often required as a preprocessing step in existing MAS methods. We introduced
the concept of ensemble hashing by extending mHF [3] for volumetric hashing
and posed retrieval as an assignment problem that we solved through LP and
Hungarian algorithm in Hamming space. The segmentation results were bench-
marked against the NMI based atlas selection technique (baseline) and MLVN.
We demonstrated that our retrieval solution in combination with MAS boosts
up computational speed significantly without compromising the overall perfor-
mance. Although the combination is still slower than CNN based segmentation
at deployment stage it generates better results especially in presence of lim-
ited data. As future work, we will investigate the extension of the proposed
technique for organ- or disease-specific MAS by confining the retrieval on local
regions (organ level) rather global (whole volume level).
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