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Abstract. We propose a method for automatic segmentation of the
prostate clinical target volume for brachytherapy in transrectal ultra-
sound (TRUS) images. Because of the large variability in the strength of
image landmarks and characteristics of artifacts in TRUS images, exist-
ing methods achieve a poor worst-case performance, especially at the
prostate base and apex. We aim at devising a method that produces
accurate segmentations on easy and difficult images alike. Our method
is based on a novel convolutional neural network (CNN) architecture. We
propose two strategies for improving the segmentation accuracy on diffi-
cult images. First, we cluster the training images using a sparse subspace
clustering method based on features learned with a convolutional autoen-
coder. Using this clustering, we suggest an adaptive sampling strategy
that drives the training process to give more attention to images that are
difficult to segment. Secondly, we train multiple CNN models using sub-
sets of the training data. The disagreement within this CNN ensemble is
used to estimate the segmentation uncertainty due to a lack of reliable
landmarks. We employ a statistical shape model to improve the uncer-
tain segmentations produced by the CNN ensemble. On test images from
225 subjects, our method achieves a Hausdorff distance of 2.7 ± 2.1 mm,
Dice score of 93.9 ± 3.5, and it significantly reduces the likelihood of
committing large segmentation errors.

1 Introduction

Transrectal ultrasound (TRUS) is routinely used in the diagnosis and treatment
of prostate cancer. This study addresses the segmentation of the clinical target
volume (CTV) in 2D TRUS images, an essential step for radiation treatment
planning [9]. The CTV is delineated on a series of 2D TRUS images from the
prostate base to apex. This is a challenging task because image landmarks are
often weak or non-existent, especially at the base and apex, and various types of
artifacts can be present. Therefore, manual segmentation is tedious and prone to
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high inter-observer variability. Several semi- and fully-automatic segmentation
algorithms have been proposed based on methods such as level sets, shape and
appearance models, and machine learning [7,10]. However, these methods often
require careful initialization and are too slow for real-time segmentation. More-
over, although some of them achieve good average results in terms of, e.g., Dice
Similarity Coefficient (DSC), criteria that show worst-case performance such as
the Hausdorff Distance (HD) are either not reported or display large variances.
This is because some images can be particularly difficult to segment due to weak
prostate edges and strong artifacts. This also poses a challenge for deep learning-
based methods that have achieved great success in medical image segmentation.
Since they have a high representational power and are trained using stochastic
gradient descent with uniform sampling of the training data, their training can
be dominated by the more typical samples in the training set, leading to poor
generalization on less-represented images.

In this paper, we propose a method for segmentation of the CTV in 2D TRUS
images that is geared towards achieving good results on most test images while
at the same time reducing large segmentation errors. Our contributions are:

1. We propose a novel convolutional neural network (CNN) architecture for
segmentation of the CTV in 2D TRUS images.

2. We suggest an adaptive sampling method for CNN training. In brief, our
method samples the training images based on how likely they are to contribute
to improving the segmentation of difficult images in a validation set.

3. We estimate the segmentation uncertainty based on the disagreement among
an ensemble of CNNs and propose a novel method to improve the highly
uncertain segmentations with the help of a statistical shape model (SSM).

2 Materials and Methods

2.1 Data

We used the TRUS images of 675 subjects. From each subject, 7 to 14 2D TRUS
images of size 415×490 pixels with a pixel size of 0.15 × 0.15 mm2 were acquired.
The CTV was delineated in each slice by experienced radiation oncologists. We
used the data from 450 subjects for training, including cross-validation, and left
the remaining 225 subjects (including a total of 2207 2D images) for test.

2.2 Clustering of the Training Images

We rely on the method of sparse subspace clustering [1] and use a convolu-
tional autoencoder (CAE) for learning low-dimensional image representations
as proposed in [4]. As shown in Fig. 1, the encoder part of the CAE learns a low-
dimensional representation zi

enc for an input image xi. Then, a fully-connected
layer, which consists of multiplication with a matrix, Γ , without a bias term and
nonlinear activation function, transforms this representation into the input to
the decoder, zi

dec. The sparse subspace clustering is enforced by requiring:
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Zdec
∼= ZencΓ such that: diag(Γ ) = 0 (1)

where Zenc is the matrix that has zi
enc for all training images as its columns,

and similarly for Zdec, and Γ is a sparse matrix with zero diagonal. By enforcing
sparsity on Γ , we require that the representation of the ith image, zi

dec, be
approximated as a linear combination of a small number of those of other images
in the training set. Note that although the relation between Zdec and Zenc is
linear, the clustering method is far from linear because zi

enc is a very rich and
highly non-linear representation of the image.

Fig. 1. The CAE architecture used to learn image affinities. On the bottom right, an
image (with red borders) is shown along with 4 images with decreasing (left-to-right)
similarity to it based on the affinity matrix, C = |Γ | + |ΓT|, learned by the CAE.

We first train a standard CAE, i.e., with Γ = I. In this stage, we minimize
the standard CAE cost function, i.e., the reconstruction error ‖X̂−X‖22, where X
and X̂ denote, respectively, matrices of the input images and the reconstructed
images. In the second stage, we introduce Γ and train the network by solving:

minimize‖X̂ − X‖22 + λ1‖Zenc − ZencΓ‖22 + λ2‖Γ‖1 s.t. diag(Γ ) = 0 (2)

We empirically chose λ1 = λ2 = 0.1. For both training stages, we trained
the network for 100 epochs using Adam [5] with a learning rate of 10−3. Once
the network is trained, an affinity matrix can be created as C = |Γ | + |ΓT|,
where C(i, j) indicates the similarity between the ith and jth images. Spectral
clustering methods can be used to cluster the data based on C, but we will use
C directly as explained in Sect. 2.4.

2.3 Proposed CNN Architecture

A simplified representation of our CNN is shown in Fig. 2. Our design is different
from widely-used networks such as [8] in that: (1) We apply convolutional filters
of varying sizes (k ∈ {3, 5, 7, 9, 11}) and strides (s ∈ {1, 2, 3, 4, 5}) directly to the
input image to extract fine and coarse features. Because small image patches
are overwhelmed by speckle and contain little edge information, applying larger
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filters directly on the image should help the network learn more informative
features at different scales, (2) The computed features at each fine scale are
forwarded to all coarser layers by applying convolutional kernels of proper sizes
and strides. This promotes feature reuse, which reduces the number of net-
work parameters while increasing the richness of the learned representations [3].
Hence, the network extracts features at multiple different resolutions and fields-
of-view. These features are then combined via a series of transpose convolutions.
(3) In both the contracting and the expanding paths, features go through resid-
ual blocks to increase the richness of representations and ease the training. The
network outputs a prostate segmentation probability map (in [0,1]). We train the
network by maximizing the DSC between this probability map and the ground-
truth segmentation. For this, we used Adam with a learning rate of 10−4 and
performed 200 epochs. The training process is explained in Sect. 2.4.

Fig. 2. The proposed CNN architecture. To avoid clutter, the network is shown for a
depth of 3. We used a network with a depth of 5; i.e., we also applied C-9 and C-11.
Number of feature maps is also shown. All convolutions are followed by ReLU.

2.4 Training a CNN Ensemble with Adaptive Sampling

Due to non-convexity and extreme complexity of their optimization landscape,
deep CNNs converge to a local minimum. With small training data, these minima
can be heavily influenced by the more prevalent samples in the training set. A
powerful approach to reducing the sensitivity to local minima and reducing the
generalization error is to learn an ensemble of models [2]. We train K = 5 CNN
models using 5-fold cross validation. Let us denote the indices of the training
and validation images for one of these models with Str and Svl, respectively. Let
ei denote the “error” committed on the ith validation image by the CNN after
the current training epoch. As shown in Fig. 3, for the next epoch we sample the
training images according to their similarity to the difficult validation images.
Specifically, we compute the probability of sampling the jth training image as:

p(j) = q(j)/Σjq(j) where q(j) = Σi∈SvlC(i, j)e(i) (3)

We initialize p to a uniform distribution for the first epoch. Importantly,
there is a great flexibility in the choice of the error, e. For example, e does not



Accurate and Robust Segmentation of the Clinical Target Volume 535

Fig. 3. The proposed training loop with adaptive sampling of the training images.

have to possess requirements such as differentiability. In this work, we chose
the Hausdorff Distance (HD) as e. For two curves, X and Y , HD is defined
as HD(X,Y ) = max

(
sup
y∈Y

inf
x∈X

‖x − y‖, sup
x∈X

inf
y∈Y

‖x − y‖)
. Although HD is an

important measure of segmentation error, it cannot be easily minimized as it is
non-differentiable. Our approach provides an indirect way to reduce HD.

2.5 Improving Uncertain Segmentations Using an SSM

Training multiple models enables us to estimate the segmentation (un)certainty
by examining the disagreement among the models. For a given image, we com-
pute the average pair-wise DSC between the segmentations produced by the 5
CNNs. If this value is above the empirically-chosen threshold of 0.95, we trust
the CNN segmentations because of high agreement among the 5 CNNs trained
on different data. In such a case, we will compute the average of the 5 probability
maps and threshold it at 0.50 to yield the final segmentation (Fig. 4, top row).

Fig. 4. Top: an “easy” image, (a) the CNNs produce similar results, (b) the final seg-
mentation produced by thresholding the mean probability map. Bottom: a “difficult”
image, (c) there is large disagreement between CNNs, (d) the certainty map with sinit
(red) superimposed, (e) the final segmentation, simpr (blue), obtained using SSM.
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If the mean pair-wise DSC among the 5 CNN segmentations is below 0.95, we
improve it by introducing prior information in the form of an SSM. We built the
SSM from a set of 75 MR images with ground-truth prostate segmentation pro-
vided by expert radiologists. From each slice of the MR images, we extracted 100
equally-spaced points on the boundary of the prostate, rigidly (i.e., translation,
scale, and rotation) registered them to one reference point set, and computed
the SVD of the point sets. We built three separate SSMs for base, mid-gland,
and apex. In deciding whether an MRI slice belonged to base, mid-gland, or
apex, we assumed that each of these three sections accounted for one third of
the prostate length. We use u and V to denote, respectively, the mean shape and
the matrix with the n most important shape modes as its columns. We chose
n = 5 because the top 5 modes explained more than 98% of the shape variance.

If the agreement among the CNN segmentations is below the threshold, we
use them to compute: (1) An initial segmentation boundary, sinit, by thresholding
the average of the 5 probability maps, p̄, at 0.5, and (2) a certainty map:

Q = ∇FKW = ∇(1 − p̄2 − (1 − p̄)2) (4)

where FKW is based on the Kohavi-Wolpert variance [6]. FKW is 0 where all
models agree and increases as the disagreement grows. As shown in Fig. 4(d), Q
indicates, roughly, the locations where segmentation boundaries predicted by the
5 models are close, i.e., segmentations are more likely to be correct. Therefore,
we estimate an improved segmentation boundary, simpr, as:

simpr =Rθ∗ [s∗(V w∗ + u)] + t∗

where: {s∗, t∗, w∗, θ∗} = argmin
s,t,w,θ

‖Rθ[s(V w + u)] + t − sinit‖Q
(5)

where t, s, and w denote, respectively, translation, scale, and the coefficients
of the shape model, Rθ is the rotation matrix with angle θ, and ‖.‖Q denotes
the weighted �2 norm using weights Q computed in Eq. (4). In other words, we
fit an SSM to sinit while attaching more importance to parts of sinit that have
higher certainty. Since the objective function in Eq. 5 is non-convex, alternating
minimization is used to find a stationary point. We initialize t to the centroid
of the initial segmentation, s to 1, and w and θ to zero and perform alternating
minimization until the objective function reduces by less than 1% in an iteration.
Up to 3 iterations sufficed to converge to a good result (Fig. 4, bottom row).

3 Results and Discussion

We compare our method with the adaptive shape model-based method of [10]
and CNN model of [8], which we denote as ADSM and U-NET, respectively. We
report three results for our method: (1) Proposed-OneCNN: only one CNN is
trained, (2) Proposed-Ensemble: five CNNs are trained as explained in Sect. 2.4
and the final segmentation is obtained by thresholding the average probability
map at 0.5, and (3) Proposed-Full: improves uncertain segmentations produced
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Table 1. Summary of the comparison of the proposed method with ADSM and U-NET.

DSC HD (mm) 95th percentile of HD (mm)

Mid-gland ADSM 89.9 ± 3.9 3.2 ± 2.0 7.2

U-NET 92.0 ± 3.6 3.6 ± 2.1 7.3

Proposed-Full 94.6 ± 3.1 2.5 ± 1.6 4.6

Base ADSM 86.8 ± 6.6 3.9 ± 2.4 8.0

U-NET 91.2 ± 4.1 3.8 ± 2.8 8.6

Proposed-Full 93.6 ± 3.6 2.7 ± 2.0 5.0

Apex ADSM 84.9 ± 7.4 4.4 ± 3.0 8.4

U-NET 87.3 ± 5.6 4.6 ± 3.2 9.0

Proposed-Full 91.2 ± 5.0 3.0 ± 1.9 5.5

Fig. 5. Example segmentations produced by different methods.

by Proposed-Ensemble as explained in Sect. 2.5. Our comparison criteria are
DSC and HD. We also report the 95%-percentile of HD across the test images
as a measure of the worst-case performance on the population of test images.

As shown in Table 1, our method outperformed the other methods in terms of
DSC and HD. Paired t-tests (at p = 0.01) showed that the HD obtained by our
method was significantly smaller than the other methods in all three prostate
sections. Our method also achieved much smaller values for the 95%-percentile
of HD. Figure 5 shows example segmentations produced by different methods.

Table 2 shows the effectiveness of our proposed strategies for improving
the segmentations. Proposed-Ensemble and Proposed-Full achieve much better
results than Proposed-OneCNN. There is a marked improvement in DSC. The
reduction in HD is also substantial. Mean, standard deviation, and the 95%-
percentile of HD have been greatly reduced by our proposed strategies. Paired
t-tests (at p = 0.01) showed that Proposed-Ensemble achieved a significantly
lower HD than Proposed-OneCNN and, on images that were processed by
SSM fitting, Proposed-Full significantly reduced HD compared with Proposed-
Ensemble.

Both the CAE (Fig. 1) and the CNN (Fig. 2) were implemented in Tensor-
Flow. On an Nvidia GeForce GTX TITAN X GPU, the training times for the
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Table 2. Performance of the proposed method at different stages.

DSC HD (mm) 95th percentile of HD (mm)

Proposed-OneCNN 91.8 ± 4.3 3.6 ± 2.6 8.1

Proposed-ensemble 93.5 ± 3.6 3.0 ± 2.1 5.5

Proposed-full 93.9 ± 3.5 2.7 ± 2.1 5.1

CAE and each of the CNNs, respectively, were approximately 24 and 12 h. For
a test image, each CNN produces a segmentation in 0.02 s.

4 Conclusion

In the context of prostate CTV segmentation in TRUS, we proposed adaptive
sampling of the training data, ensemble learning, and use of prior shape infor-
mation to improve the segmentation accuracy and robustness and reduce the
likelihood of committing large segmentation errors. Our method achieved signif-
icantly better results than competing methods in terms of HD, which measures
largest segmentation error. Our methods also substantially reduced the maxi-
mum errors committed on the population of test images. An important contribu-
tion of this work was a method to compute a segmentation certainty map, which
we used to improve the segmentation accuracy with the help of an SSM. This
certainty map can have many other useful applications, such as in registration of
TRUS to pre-operative MRI and for radiation treatment planning. A shortcom-
ing of this work is with regard to our ground-truth segmentations, which have
been provided by expert radiation oncologists on TRUS images. These segmen-
tations can be biased at the prostate base and apex. Therefore, a comparison
with registered MRI is warranted.
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