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Abstract. Automatic prostate segmentation in transrectal ultrasound
(TRUS) is of essential importance for image-guided prostate biopsy
and treatment planning. However, developing such automatic solutions
remains very challenging due to the ambiguous boundary and inhomoge-
neous intensity distribution of the prostate in TRUS. This paper devel-
ops a novel deep neural network equipped with deep attentional fea-
ture (DAF) modules for better prostate segmentation in TRUS by fully
exploiting the complementary information encoded in different layers of
the convolutional neural network (CNN). Our DAF utilizes the attention
mechanism to selectively leverage the multi-level features integrated from
different layers to refine the features at each individual layer, suppressing
the non-prostate noise at shallow layers of the CNN and increasing more
prostate details into features at deep layers. We evaluate the efficacy of
the proposed network on challenging prostate TRUS images, and the
experimental results demonstrate that our network outperforms state-
of-the-art methods by a large margin.

1 Introduction

Prostate cancer is the most common noncutaneous cancer and the second leading
cause of cancer-related deaths in men [9]. Transrectal ultrasound (TRUS) is the
routine imaging modality for image-guided biopsy and therapy of prostate can-
cer. Segmenting prostate from TRUS is of essential importance for the treatment
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Fig. 1. Example TRUS images. Red contour denotes the prostate boundary. There
are large prostate shape variations, and the prostate tissues present inhomogeneous
intensity distributions. Orange arrows indicate missing/ambiguous boundaries.

planning [10], and can help surface-based registration between TRUS and preop-
erative MRI during image-guided interventions [11]. However, accurate prostate
segmentation in TRUS remains very challenging due to the missing/ambiguous
boundary and inhomogeneous intensity distribution of the prostate in TRUS, as
well as the large shape variations of different prostates (see Fig. 1).

The problem of automatic prostate segmentation in TRUS has been exten-
sively exploited in the literature. One main methodological stream utilizes shape
statistics for the prostate segmentation. Shen et al. [8] presented a statistical
shape model for prostate segmentation. Yan et al. [14] developed a partial active
shape model to address the missing boundary issue in ultrasound shadow area.
Another direction is to formulate the prostate segmentation as a foreground
classification task. Ghose et al. [3] performed supervised soft classification with
random forest to identify prostate. In general, all above methods used hand-
crafted features for segmentations, which are ineffective to capture the high-level
semantic knowledge, and thus tend to fail in generating high-quality segmenta-
tions when there are ambiguous boundaries in TRUS. Recently, deep neural
networks are demonstrated to be a very powerful tool to learn deep features for
object segmentation. For TRUS segmentation, Yang et al. [15] proposed to learn
the shape prior with recurrent neural networks and achieved state-of-the-art
segmentation performance.

One of the main advantages of deep neural networks is to generate well-
organized features consisting of abundant semantic and fine information. How-
ever, directly using these features at individual layers to conduct prostate seg-
mentation cannot guarantee satisfactory results. It is essential to leverage the
complementary advantages of features at multiple levels and to learn more dis-
criminative features targeting for accurate and robust segmentation. To this end,
we propose to fully exploit the complementary information encoded in multi-
layer features (MLF) generated by a convolutional neural network (CNN) for
better prostate segmentation in TRUS images. Specifically, we develop a novel
prostate segmentation network with deep attentional features (DAFs). The DAF
is generated at each individual layer by learning the complementary information
of the low-level detail and high-level semantics in MLF, thus is more powerful
for the better representation of prostate characteristics. Our DAFs at shallow
layers can learn highly semantic information encoded in the MLF to suppress
its non-prostate regions, while our DAFs at deep layers are able to select the
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Fig. 2. The schematic illustration of our prostate segmentation network with deep
attentional features (DAF). SLF: single-layer features; MLF: multi-layer features.

fine detail features from the MLF to refine prostate boundaries. Experiments on
TRUS images demonstrate that our segmentation using deep attentional features
outperforms state-of-the-art methods. The code is publicly available at https://
github.com/zijundeng/DAF.

2 Deep Attentional Features for Segmentation

Segmenting prostate from TRUS images is a challenging task especially due
to the ambiguous boundary and inhomogeneous intensity distribution of the
prostate in TRUS. Directly using low-level or high-level features, or even their
combinations to conduct prostate segmentation may often fail to get satisfac-
tory results. Therefore, leveraging various factors such as multi-scale contextual
information, region semantics and boundary details to learn more discriminative
prostate features is essential for accurate and robust prostate segmentation.

To address above issues, we present a deep neural network with deep atten-
tional features (DAFs). The following subsections present the details of the pro-
posed method and elaborate the novel DAF module.

2.1 Method Overview

Figure 2 illustrates the proposed prostate segmentation network with deep atten-
tional features. Our network takes the TRUS image as the input and outputs the
segmentation result in an end-to-end manner. It first produces a set of feature
maps with different resolutions by using the CNN. The feature maps at shallow
layers have high resolutions but with fruitful detail information while the feature
maps at deep layers have low resolutions but with high-level semantic informa-
tion. The highly semantic features can help to identify the position of prostate
and the fine detail is able to indicate the fine boundary of the prostate.

After obtaining the feature maps with different levels of information, we
enlarge these feature maps with different resolutions to a quarter of the size of
original input image by linear interpolation (the feature maps at the first layer

https://github.com/zijundeng/DAF
https://github.com/zijundeng/DAF
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Fig. 3. The schematic illustration of the deep attentional feature (DAF) module.

are ignored due to the memory limitation). The enlarged feature maps at each
individual layer are denoted as “single-layer features (SLF)”, and the multiple
SLFs are combined together, followed by convolution operations, to generate the
“multi-layer features (MLF)”. Although the MLF encodes the low-level detail
information as well as the high-level semantic information of the prostate, it also
inevitably incorporates noise from the shallow layers and losses some subtle parts
of the prostate due to the coarse features at deep layers. Hence, the straight-
forward segmentation result from the MLF tends to contain lots of non-prostate
regions and lose parts of prostate tissues.

In order to refine the features of the prostate ultrasound image, we present a
DAF module to generate deep attentional features at each layer in the principle
of the attention mechanism. The DAF module leverages the MLF and the SLF
as the inputs and produces the refined feature maps; please refer to Sect. 2.2
for the details of our DAF module. Then, we obtain the segmentation maps
from the deep attentional features at each layer by using the deeply supervised
mechanism [4,13] that imposes the supervision signals to multiple layers. Finally,
we get the prostate segmentation result by averaging the segmentation maps at
each individual layer.

2.2 Deep Attentional Features

As presented in Sect. 2.1, the feature maps at shallow layers contain the detail
information of prostate but also include non-prostate regions, while the feature
maps at deep layers are able to capture the highly semantic information to indi-
cate the location of the prostate but may lose the fine details of the prostate’s
boundaries. To refine the features at each layer, we present a DAF module (see
Fig. 3) to generate the deep attentional features by utilizing the attention mech-
anism to selectively leverage the features at MLF to refine features at the indi-
vidual layer.

Specifically, given the single-layer feature maps at each layer, we concatenate
them with the multi-layer feature maps as Fx, and then produce the unnormal-
ized attention weights Wx (see Fig. 3):

Wx = fa(Fx; θ), (1)
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where θ represents the parameters learned by fa which contains three convolu-
tional layers. The first two convolutional layers use 3 × 3 kernels, and the last
convolutional layer applies 1 × 1 kernels.

After that, our DAF module computes the attention map Ax by normalizing
Wx across the channel dimension with a Softmax function:

ak
i,j =

exp(wk
i,j)∑

k exp(wk
i,j)

, (2)

where wk
i,j denotes the value at spatial location (i, j) position and k-th channel

on Wx, while ak
i,j denotes the normalized attention weight at spatial location

(i, j) and k-th channel on Ax. After obtaining the attention map, we multiply it
with the MLF in a element-by-element manner to generate a new refined feature
map. The new features are concatenated with the SLF and then we apply a 1×1
convolution operation to produce the final attentional features for the given layer
(see Fig. 3).

We apply the DAF module on each layer to refine its feature map. During
this process, the attention mechanism is used to generate a set of weights to
indicate how much attention should be paid to the MLF for each individual
layer. Hence, our DAF enables the features at shallow layers to select the highly
semantic features from the MLF in order to suppress the non-prostate regions,
while the features at deep layers are able to select the fine detail features from
the MLF to refine the prostate boundaries.

3 Experiments

3.1 Materials

Experiments were carried on TRUS images obtained using Mindray DC-8 ultra-
sound system in the First Affiliate Hospital of Sun Yat-Sen University. Informed
consent was obtained from all patients. In total, we collected 530 TRUS images
from 17 TRUS volumes which were acquired from 17 patients. The size of each
TRUS image is 214 × 125 with a pixel size of 0.5 × 0.5 mm. We augmented
(i.e., rotated, horizontally flipped) 400 images of 10 patients to 2400 as training
dataset, and taken the remaining 130 images from 7 patients as testing dataset.
All the TRUS images were manually segmented by an experienced clinician.

3.2 Training and Testing Strategies

Our proposed framework was implemented on PyTorch and used the
ResNeXt101 [12] as the feature extraction layers (the orange parts in the left of
Fig. 2).

Loss Function. Cross-entropy loss was used for each output of this network.
The total loss Lt was defined as the summation of loss on all predicted score
maps:
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Lt =
n∑

i=1

wiLi +
n∑

j=1

wjLj + wfLf , (3)

where wi and Li represent the weight and loss of i-th layer; while wj and Lj

represent the weight and loss of j-th layer after refining features using our DAF;
n is the number of layers of our network; wf and Lf are the weight and loss for
the output layer. We empirically set all the weights (wi, wj and wf ) as 1.

Training Parameters. In order to reduce the risk of overfitting and accelerate
the convergence of training, we used the weights trained on ImageNet [2] to
initialize the feature extraction layers and other parts were initialized by random
noise. The framework was trained on the augmented training set which contained
2400 samples. Stochastic gradient descent (SGD) with the momentum of 0.9 and
weight decay of 0.01 was used to train the whole framework. We set the learning
rate as 0.005 and it reduced to 0.0001 at 600 iterations. Learning stopped after
1200 iterations. The framework was trained on a single GPU with a mini-batch
size of 4, only taking about 20 min.

Inference. In testing, for each input TRUS image, our network produced several
output prostate segmentation maps since we added the supervision signals to all
layers. We computed the final prediction map (see the last column of Fig. 2) by
averaging the segmentation maps at each layer. After getting the final predic-
tion map, we applied the fully connected conditional random field (CRF) [5] to
improve the spatial coherence of the prostate segmentation map by considering
the relationships of neighborhood pixels.

3.3 Segmentation Performance

We compared results of our method with several advanced methods, including
Fully Convolutional Network (FCN) [6], Boundary Completion Recurrent Neu-
ral Network (BCRNN) [15], and U-Net [7]. For a fair comparison, we obtain the
results of our competitors by using either the segmentation maps provided by
corresponding authors, or re-training their models using the public implementa-
tions and adjusting training parameters to obtain best segmentation results.

The metrics employed to quantitatively evaluate segmentation included Dice
Similarity Coefficient (Dice), Average Distance of Boundaries (ADB, in pixel),
Conformity Coefficient (CC), Jaccard Index, Precision, and Recall [1]. A better
segmentation shall have smaller ADB, and larger values of all other metrics.

Table 1 lists the metric results of different methods. It can be observed that
our method consistently outperforms others on almost all the metrics. Figure 4
visualizes some segmentation results. Apparently, our method obtains the most
similar segmented boundaries to the ground truth. Furthermore, as shown in
Fig. 4, our method can successfully infer the missing/ambiguous boundaries, and
it demonstrates the proposed deep attentional features can efficiently encode
complementary information for accurate representation of the prostate tissues.
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Table 1. Metric results of different methods (best results are highlighted in bold)

Method Dice ADB CC Jaccard Precision Recall

FCN [6] 0.9188 12.6720 0.8207 0.8513 0.9334 0.9080

BCRNN [15] 0.9239 11.5903 0.8322 0.8602 0.9446 0.9051

U-Net [7] 0.9303 7.4750 0.8485 0.8708 0.8985 0.9675

Ours 0.9527 4.5734 0.9000 0.9101 0.9369 0.9698

Fig. 4. Visual comparison of prostate segmentation results. Top row: prostate TRUS
images with orange arrows indicating missing/ambiguous boundaries; bottom row: cor-
responding segmentations from our method (blue), U-Net (cyan), BCRNN (green) and
FCN (yellow), respectively. Red contours are ground truths. Our method has the most
similar segmented boundaries to the ground truth.

4 Conclusion

This paper develops a novel deep neural network for prostate segmentation in
ultrasound images by harnessing the deep attentional features. Our key idea is
to select the useful complementary information from the multi-level features to
refine the features at each individual layer. We achieve this by developing a DAF
module, which can automatically learn a set of weights to indicate the importance
of the features in MLF for each individual layer by using an attention mechanism.
Furthermore, we apply multiple DAF modules in a convolutional neural network
to predict the prostate segmentation maps in different layers. Experiments on
challenging TRUS prostate images demonstrate that our segmentation using
deep attentional features outperforms state-of-the-art methods. In addition, the
proposed method is a general solution and has the potential to be used for other
medical image segmentation tasks.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China (61701312; 61571304; 61772206), in part by the Natu-
ral Science Foundation of SZU (No. 2018010), in part by the Shenzhen Peacock
Plan (KQTD2016053112051497), in part by Hong Kong Research Grants Coun-
cil (No. 14202514) and Innovation and Technology Commission under TCFS (No.
GHP/002/13SZ), and in part by the Guangdong Natural Science Foundation (No.
2017A030311027). Xiaowei Hu is funded by the Hong Kong Ph.D. Fellowship.



530 Y. Wang et al.

References

1. Chang, H.H., Zhuang, A.H., Valentino, D.J., Chu, W.C.: Performance measure
characterization for evaluating neuroimage segmentation algorithms. Neuroimage
47(1), 122–135 (2009)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR (2009)

3. Ghose, S., et al.: A supervised learning framework of statistical shape and probabil-
ity priors for automatic prostate segmentation in ultrasound images. Med. Image
Anal. 17(6), 587–600 (2013)

4. Hu, X., Zhu, L., Qin, J., Fu, C.W., Heng, P.A.: Recurrently aggregating deep
features for salient object detection. In: AAAI (2018)
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