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Abstract. Cochlear Implants (CIs) restore hearing using an electrode array that
is surgically implanted into the intra-cochlear cavities. Research has indicated
that each electrode can lie in one of several cavities and that location is sig-
nificantly associated with hearing outcomes. However, comprehensive analysis
of this phenomenon has not been possible because the cavities are not directly
visible in clinical CT images and because existing methods to estimate cavity
location are not accurate enough, labor intensive, or their accuracy has not been
validated. In this work, a novel graph-based search is presented to automatically
identify the cavity in which each electrode is located. We test our approach on
CT scans from a set of 34 implanted temporal bone specimens. High resolution
µCT scans of the specimens, where cavities are visible, show our method to
have 98% cavity classification accuracy. These results indicate that our methods
could be used on a large scale to study the link between electrode placement and
outcome, which could lead to advances that improve hearing outcomes for CI
users.
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1 Introduction

Cochlear implants (CIs) are considered the standard of care treatment for profound
hearing loss [1]. CIs use an array of electrodes surgically implanted into the cochlea
(see Fig. 1) to directly stimulate the auditory nerve, inducing the sensation of hearing.
Although CIs have been remarkably successful, speech recognition ability remains
highly variable across CI recipients. Research has indicated that each electrode can lie
in one of several intra-cochlear cavities and that array cavity location is significantly
associated with hearing outcomes [2–6]. However, comprehensive analysis of this
phenomenon has not been possible because the cavity position for each individual
electrode has been unknown. Electrode position is generally unknown in surgery
because the array is blindly threaded into a small opening of the cochlea. To analyze
the relationship between electrode position and outcome, several groups have proposed
post-operative imaging techniques. But these processes have been relatively imprecise
because visual assessment in CT images can only indicate coarse array positioning,

© Springer Nature Switzerland AG 2018
A. F. Frangi et al. (Eds.): MICCAI 2018, LNCS 11073, pp. 47–54, 2018.
https://doi.org/10.1007/978-3-030-00937-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00937-3_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00937-3_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00937-3_6&amp;domain=pdf


e.g., whether or not the array is entirely within one internal cavity of the cochlea, rather
than specifying cavity location for each individual electrode. Thus, studies have con-
cluded that electrode position and outcomes are correlated but conclusions are vague
and conflict across studies regarding precise relationships, such as the relationship
between outcomes and the number of electrodes that lie in each cavity. Dataset size has
also been limited in many studies, in part due to the amount of manual effort that must
be undertaken to analyze the images when automatic techniques are not available. In
the current work, we propose a fully automatic approach for localizing the cavity
position of individual CI electrodes. Such an approach could permit analysis on large
numbers of datasets to better study the relationship between electrode position and
outcome, which may lead to advances in implant design or surgical techniques.

To determine the cavity in which each electrode is located, we start with an accurate
but imperfect localization of the centroid of each electrode and segmentations of the
principal intra-cochlear cavities, the scala tympani (ST) and scala vestibuli (SV) (see
Fig. 1). The electrodes are automatically localized in postimplantation CT [7, 8], where
the electrode array can be well visualized; the intra-cochlear cavities are automatically
localized in preimplantation CT [9], where there are no implant related artifacts present
and the cochlea can be visualized; and the two results are registered as shown in
Fig. 1a. While the external walls of the cochlea are visible in CT, the borders between
the intra-cochlear cavities are not directly visible due to the micron scale of the
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Fig. 1. (a) Pre-processing flow chart. The position of the electrodes relative to intracochlear
anatomy (ST = red, modiolus = green) is found by registering preimplant CT anatomy
segmentations to postimplant CT electrode localizations. In (b) and (c) different electrode
position classifications for two cases are shown in µCT (top row) and CT (middle row) overlaid
with automatic, CT-based anatomy localizations (ST = red, SV = blue). The bottom row shows
automatic anatomy and electrode localizations in 3D.
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structures separating the cavities as shown in Fig. 1b. Thus, we use a technique where
the external walls of the cochlea are used as landmarks to estimate the invisible borders
of the intracochlear cavities. To do this, a statistical shape model was constructed using
high resolution µCT imaging of cochleae specimens where intracochlear borders are
visible. µCT can be acquired for specimens but not in vivo due to radiation and size
considerations. The external wall portion of the model is fitted to the walls of the
cochlea visible in the patient CT image, and the model statistically estimates the shape
and position of the intracochlear cavities based on the wall shape.

It is possible to directly estimate the cavity location of each electrode using these
data. However, while these techniques to localize the cavities and the electrodes have
been shown to be accurate, they are prone to small errors, and small localization errors
can result in cavity classification errors. In this work, we present the first validation
study on the use of these image processing techniques for electrode cavity classifica-
tion. As our results will show, classification of the cavity position of each electrode
using these data can be done more accurately by using a method that is robust to errors
in the localization results. We present a novel graph search-based algorithm that is
robust to localization errors to classify the cavity position of each contact. We validate
our approach with a set of 34 cochlea specimens. For each specimen, we run our
automatic algorithm on pre- and postimplantation CTs. We compute the accuracy of
our results by comparing them to the ground truth cavity location, which is defined
using high resolution µCT imaging.

2 Methods

To more robustly estimate the cavity position of each electrode compared to direct
estimation based on the image processing results, we assume that the classification of
neighboring electrodes on the array should be relatively consistent. In other words, if
both flanking electrodes in a group of three lie within and distant to the border of the
scala tympani, it is highly likely that the central electrode also lies in the scala tympani.
To implement a search that exploits this heuristic, we develop a graph search-based
classification solution that permits defining penalties for class transitions between
electrodes and finding a solution that globally optimizes our classification criteria. The
graph G ¼ V ; Ef g we have designed is shown in Fig. 2. This is a directed-acyclic
graph where the N middle columns of nodes correspond to the N electrodes in the array,
and the three rows of the N middle columns correspond to the three possible cavity
classifications for each electrode (ST = scala tympani, SV = scala vestibuli, and
BM = basilar membrane). The ST and SV classifications correspond to electrodes that
fall within the scala tympani or scala vestibuli. The BM classification corresponds to
electrodes that have violated the basilar membrane that separates the ST and SV and sit
between the ST and SV in the region where the BM was located preimplantation.
Electrodes belonging to these three classifications are shown in CT and µCT and in 3D
in Fig. 1b.

The graph is designed such that a path from the seed to the endnode will include
one and only one of the three nodes that belong to each of the N electrodes. Thus, with
this graph, a path that connects the seed to the endnode also implies a cavity
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classification for each electrode. An example path is shown in red in Fig. 2. This
example path implies a ST cavity classification for electrodes 1 and N and a BM
classification for electrodes 2 and 3 because it passes through the top (ST) row in the
columns corresponding to electrodes 1 and N, and through the bottom (BM) row for
electrodes, 2 and 3. To use this graph to find an accurate cavity classification, we need
to define appropriate cost values for the set of edges E. Then we can use standard graph
searching methods, such as Dijkstra’s algorithm [10], to find the path with the globally
minimum cost.

We define two types of cost for our edge cost function, “class cost” and “transition
cost,” which are the electrode classification cost, and the class transition cost. Let C Vj

� �
and P Vj

� �
represent the cavity classification and the electrode associated with node Vj,

respectively. Then, the class cost for an edge Ei; j connecting node Vi to Vj represents
the cost for assigning the electrode represented by Vj, P Vj

� �
, to the cavity classification

associated with Vj, C Vj
� �

, and is defined by

class Vj
� � ¼

DST P Vj
� �� �� dmin þ a C Vj

� �
= ST

DSV P Vj
� �� �� dmin þ a C Vj

� �
= SV

DST P Vj
� �� �� DSV P Vj

� �� ��� �� C Vj
� �

= BM

8<
:

9=
;; ð1Þ

where

dmin ¼ min DST P Vj
� �� �

; DSV P Vj
� �� �� �

; ð2Þ

DST and DSV are signed-distance map representations of the scala tympani and scala
vestibuli computed using fast marching techniques [11] with negative distances in the
structure foreground and positive distances in the background, D Pð Þ is the value of the
signed distance map at electrode P, and a is a parameter tuned as described in the
following section that controls the width of the region between the scala tympani and
vestibuli that is considered to be the basilar membrane region. If the electrode P Vj

� �
falls

0:5a mm within the border of the scala vestibuli, then DSV P Vj
� �� � ¼ �0:5a,

DST P Vj
� �� �� 0:5a, dmin ¼ �0:5a, and DST P Vj

� �� �� DSV P Vj
� �� ��� ��� a. In this case,

the classification cost for assigning P Vj
� �

to SV, BM, or ST, would be a, � a, and � 2a.
Thus, the highest cost is assigned to ST classification. If the electrode sits farther than 0:5a
mm from the scala tympani, the second highest cost would be to BM classification.
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Fig. 2. Graph (black, green, and gray) that is used to classify the cavity location of each of the
N electrodes. One possible path through the graph is shown in red.
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Otherwise SV and BM are assigned equal cost because the electrode falls on the border
between the SV and the ammwide BM region we have defined between the ST and SV.

The transition cost for edge Ei;j represents the cost for transitioning classifications
from C Við Þ to C Vj

� �
and is defined by

transition Vi;Vj
� � ¼ b C Við Þ 6¼ C Vj

� �
0 C Við Þ ¼ C Vj

� �
� �

; ð3Þ

where b is a constant to punish class inconsistency among neighboring electrodes and
is tuned as described in the following section. The overall cost function is defined as

cost Ei;j
� � ¼

class Vj
� � þ transition Vi;Vj

� �
C Við Þ 6¼ C Vj

� �
class Vj

� �
C Við Þ ¼ C Vj

� �
or C Við Þ ¼ seed

0 C Vj
� � ¼ endnode

8<
:

9=
;;

where these three types of edges are shown as green, black, and gray edges in the graph
in Fig. 2.

Finally, it is also common for some electrodes to be outside the cochlea when the
surgeon stops inserting the array prior to those electrodes entering the cochlea. To
detect which electrodes are outside of the cochlea, we find the first electrode in the
array that falls within the foreground of the ST or SV segmentations and classify all
previous electrodes as falling outside of the cochlea.

Parameter Selection and Validation. We trained parameters and evaluated our
approach simultaneously using a leave-one-out validation study. In this process, our
two parameters a and b were tuned using 33 of the 34 datasets and then tested on the
left-out dataset. This process was repeated so that the method was tested on each of the
34 datasets while leaving that testing set out of the training process. To train our
parameters, first, heuristic tuning was done on one case. We started with values 0.3 and
0.15 for a and b and found 0.2 and 0.3 to lead to better results. Then, these values were
used as initial values when performing the parameter optimization in all cases. For each
testing case, these parameters were iteratively optimized on the training dataset until
converging to a local classification error minimum. Classification errors were defined
as the sum of incorrect cavity classifications relative to the ground truth classification
across all training sets. The ground truth cavity classification for each electrode was
defined by visual inspection of the raw high resolution µCT images, where cavity
borders are visible, in an interactive viewer with three 2D orthogonal planar views
without the benefit of the automated image processing data. Within each iteration of the
parameter search, each parameter was independently varied from its initial value in the
range [−0.125, 0.125] in steps of 0.025. A new value for the parameter was selected as
the value that resulted in minimum overall error. Because the cost function is discrete,
it often can result in multiple equal minima. When separate multiple minima were
present, preference was given to the minimum closest to the initial value. When three or
more adjacent values resulted in identical minimal error, preference was given to values
that were not adjacent to non-minimal values in order to choose values that corre-
sponded to locations within, rather than on the edge of, the minimum region.
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3 Results

A local optimum of both parameters was successfully obtained for every leave-one-out
parameter search. In 1 of 34 test cases (case #12), the parameter search selected a and b
as 0.175 and 0.3. In the remaining 33 of 34 test cases, the parameter search converged
to values of 0.2 and 0.3. Thus, these values appear to correspond to a stable optimum
and we select them as the final parameter values. Violin plots of the number of
classification errors for each dataset when sweeping these parameters around their final
parameter values is shown in Fig. 3. The mean of the number of errors for each case is
shown as a red cross for each parameter value. As can be seen in the figure, values of
0.2 and 0.3 for a and b correspond to a clear local minimum of classification error.

Overall classification results are shown in Table 1. When using the trained
parameters found in the leave-one-out tests, we achieve overall classification accuracy
of 98%, and excellent specificity and sensitivity for the ST, SV, and Out of Cochlea
(OC) classifications. However, our method achieves 0% sensitivity for the BM class.
This is because the BM class is highly underrepresented in our dataset, with all of the
only 5 BM electrodes belonging to case #12. Thus, when leave-one-out testing on case
#12, there were zero BM electrodes in the training set, and it is unsurprising that the
resulting leave-one-out trained a was selected low enough to lead to 0% BM sensi-
tivity. When using the final selected parameters on the whole dataset, overall accuracy
is 99% and BM sensitivity is 60%, which is still low but unsurprising considering the
BM class is only represented by 5 of 578 electrodes in our dataset.
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Fig. 3. Violin plots of classification errors made in the entire dataset when sweeping parameters
a (left) and b (right) around their final values.

Table 1. Confusion matrices and classification results of the leave-one-out experiment, when
using the final selected parameters on the entire dataset, and when not using the proposed graph
search method.

Results with leave-one-
out

Results with final
parameters

Results without graph
search

OC ST SV BM OC ST SV BM OC ST SV BM

Ground Truth OC 32 2 0 0 32 2 0 0 32 0 0 2
ST 1 506 2 0 1 506 2 0 1 458 2 48
SV 0 0 30 0 0 0 30 0 0 0 27 3
BM 0 5 0 0 0 2 0 3 0 2 0 3

Sensitivity (%) 94.1 99.4 100.0 0.0 94.1 99.4 100.0 60.0 94.1 90.0 90.0 60.0
Specificity (%) 99.8 89.9 99.6 100.0 99.8 94.2 99.6 100.0 99.8 97.1 99.6 90.8
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We also compared the leave-one-out classification results to expert classification
and automatic classification using the image processing data directly without the
benefit of the robustness-boosting graph search method we propose. These results are
shown as violin plots in Fig. 4 and confusion matrix in Table 1. Expert classification of
cavity position for each electrode was done by inspection of the CT images and image
processing data (electrode localization and anatomy segmentation) in an interactive
viewer with 3D views and three 2D orthogonal planar views without the benefit of the
high resolution µCT. The expert classification results are found to have a slightly
higher mean error than our proposed method, although this difference was not found to
be statistically significant using a paired t-test. Both the proposed method and expert
classification perform statistically significantly better (p < 1e-4) than automatic clas-
sification without the graph search method proposed in this work.

4 Conclusions

In this work, we have proposed a novel and fully automatic method for identification of
the cavity position of intracochlear electrodes. Our experiments show that our method
has high classification accuracy. Compared to expert cavity identification, our method
produces comparable results. Compared to non-robust cavity identification techniques,
our method produces significantly more accurate results. Our approach is also fast,
requiring less than a second of processing time after a 5 min procedure is used to
automatically localize the anatomical structures and electrode array.

While overall classification accuracy is high, our method results in poor sensitivity
for BM classification because this class is inadequately represented in our dataset. In
future work, we will expand our ground truth dataset to attempt to obtain more
examples of electrodes located in the BM region to explore whether our method can
achieve acceptable BM classification sensitivity when using a more balanced training
dataset. We also plan to apply our method to large numbers of clinical datasets to
facilitate studying how the location of individual electrodes correlates with outcomes
with the goal of developing technologies that can improve hearing outcomes with CIs.

*
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Fig. 4. Final results shown as violin plots of the proposed automatic method with graph search
(GS), expert determination of the cavity positioning, and automatic cavity localization without
the graph search method we propose.
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