
Semi-automatic RECIST Labeling on CT
Scans with Cascaded Convolutional

Neural Networks

Youbao Tang1(B), Adam P. Harrison3, Mohammadhadi Bagheri2, Jing Xiao4,
and Ronald M. Summers1

1 Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, National
Institutes of Health Clinical Center, Bethesda, MD 20892, USA

youbao.tang@nih.gov
2 Clinical Image Processing Service, National Institutes of Health Clinical Center,

Bethesda, MD 20892, USA
3 NVIDIA, Santa Clara, CA 95051, USA

4 Ping An Insurance Company of China, Shenzhen 510852, China

Abstract. Response evaluation criteria in solid tumors (RECIST) is the
standard measurement for tumor extent to evaluate treatment responses
in cancer patients. As such, RECIST annotations must be accurate. How-
ever, RECIST annotations manually labeled by radiologists require pro-
fessional knowledge and are time-consuming, subjective, and prone to
inconsistency among different observers. To alleviate these problems, we
propose a cascaded convolutional neural network based method to semi-
automatically label RECIST annotations and drastically reduce annota-
tion time. The proposed method consists of two stages: lesion region nor-
malization and RECIST estimation. We employ the spatial transformer
network (STN) for lesion region normalization, where a localization net-
work is designed to predict the lesion region and the transformation
parameters with a multi-task learning strategy. For RECIST estimation,
we adapt the stacked hourglass network (SHN), introducing a relation-
ship constraint loss to improve the estimation precision. STN and SHN
can both be learned in an end-to-end fashion. We train our system on
the DeepLesion dataset, obtaining a consensus model trained on RECIST
annotations performed by multiple radiologists over a multi-year period.
Importantly, when judged against the inter-reader variability of two addi-
tional radiologist raters, our system performs more stably and with less
variability, suggesting that RECIST annotations can be reliably obtained
with reduced labor and time.

1 Introduction

Response evaluation criteria in solid tumors (RECIST) [1] measures lesion or
tumor growth rates across different time points after treatment. Today, the
majority of clinical trials evaluating cancer treatments use RECIST as an objec-
tive response measurement [2]. Therefore, the quality of RECIST annotations
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Fig. 1. Five examples of RECIST annotations labeled by three radiologists. For each
image, the RECIST annotations from different observers are indicated by diameters
with different colors. Better viewed in color.

will directly affect the assessment result and therapeutic plan. To perform
RECIST annotations, a radiologist first selects an axial image slice where the
lesion has the longest spatial extent. Then he or she measures the diameters of
the in-plane longest axis and the orthogonal short axis. These two axes constitute
the RECIST annotation. Figure 1 depicts five examples of RECIST annotations
labeled by three different radiologists with different colors.

Using RECIST annotation face two main challenges. (1) Measuring tumor
diameters requires a great deal of professional knowledge and is time-consuming.
Consequently, it is difficult and expensive to manually annotate large-scale
datasets, e.g., those used in large clinical trials or retrospective analyses. (2)
RECIST marks are often subjective and prone to inconsistency among different
observers [3]. For instance, from Fig. 1, we can see that there is large variation
between RECIST annotations from different radiologists. However, consistency
is critical in assessing actual lesion growth rates, which directly impacts patient
treatment options [3]. To overcome these problems, we propose a RECIST esti-
mation method that uses a cascaded convolutional neural network (CNN) app-
roach. Given region of interest (ROI) cropped using a bounding box roughly
drawn by a radiologist, the proposed method directly outputs RECIST annota-
tions. As a result, the proposed RECIST estimation method is semi-automatic,
drastically reducing annotation time while keeping the “human in the loop”. To
the best of our knowledge, this paper is the first to propose such an approach. In
addition, our method can be readily made fully automatic as it can be trivially
connected with any effective lesion localization framework.

From Fig. 1, the endpoints of RECIST annotations can well represent their
locations and sizes. Thus, the proposed method estimates four keypoints, i.e.,
the endpoints, instead of two diameters. Recently, many approaches [4–7] have
been proposed to estimate the keypoints of the human body, e.g., knee, ankle,
and elbow, which is similar to our task. Inspired by the success and simplicity
of stacked hourglass networks (SHN) [4] for human pose estimation, this work
employs SHN for RECIST estimation. Because the long and short diameters are
orthogonal, a new relationship constraint loss is introduced to improve the accu-
racy of RECIST estimation. Regardless of class, the lesion regions may have large
variability in sizes, locations and orientations in different images. To make our
method robust to these variations, the lesion region first needs to be normalized
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Fig. 2. The framework of the proposed method. The predicted mask and keypoint
heatmaps are rendered with a color map for visualization purposes.

before feeding into the SHN. In this work, we use the spatial transformer net-
work (STN) [8] for lesion region normalization, where a ResNet-50 [9] based
localization network is designed for lesion region and transformation parameter
prediction. Experimental results over the DeepLesion dataset [10] compare our
method to the multi-rater annotations in that dataset, plus annotations from two
additional radiologists. Importantly, our method closely matches the multi-rater
RECIST annotations and, when compared against the two additional readers,
exhibits less variability than the inter-reader variability.

In summary, this paper makes the following main contributions: (1) We are
the first to automatically generate RECIST marks in a roughly labeled lesion
region. (2) STN and SHN are effectively integrated for RECIST estimation, and
enhanced using multi-task learning and an orthogonal constraint loss, respec-
tively. (3) Our method evaluated on a large-scale lesion dataset achieves lower
variability than manual annotations by radiologists.

2 Methodology

Our system assumes the axial slice is already selected. To accurately estimate
RECIST annotations, we propose a cascaded CNN based method, which consists
of an STN for lesion region normalization and an SHN for RECIST estimation,
as shown in Fig. 2. Here, we assume that every input image always contains a
lesion region, which is roughly cropped by a radiologist. The proposed method
can directly output an estimated RECIST annotation for every input.
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2.1 Lesion Region Normalization

The original STN [8] contains three components, i.e., a localization network,
a grid generator, and a sampler, as shown in Fig. 2. The STN can implicitly
predict transformation parameters of an image and can be used to implement any
parameterizable transformation. In this work, we use STN to explicitly predict
translation, rotation and scaling transformations of the lesion. Therefore, the
transformation matrix M can be formulated as:

M =

Translation
︷ ︸︸ ︷
⎡

⎣

1 0 tx
0 1 ty
0 0 1

⎤

⎦

Rotation
︷ ︸︸ ︷
⎡

⎣

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

⎤

⎦

Scaling
︷ ︸︸ ︷
⎡

⎣

s 0 0
0 s 0
0 0 1

⎤

⎦ =

⎡

⎣

s cos(α) −s sin(α) tx
s sin(α) s cos(α) ty

0 0 1

⎤

⎦

(1)
From (1) there are four transformation parameters in M, denoted as θ =

{tx, ty, α, s}. The goal of the localization network is to predict the transformation
that will be applied to the input image. In this work, a localization network based
on ResNet-50 [9] is designed as shown in Fig. 2. The purple blocks of Fig. 2 are the
first five blocks of ResNet-50. Importantly, unlike many applications of STN, the
true θ can be obtained easily for transformation parameters prediction (TPP)
by settling on a canonical layout for RECIST marks.

As Sect. 3 will outline, the STN also benefits from additional supervisory
data, in the form of lesion pseudo-masks. To this end, we generate a lesion
pseudo-mask by constructing an ellipse from the RECIST annotations. Ellipses
are a rough analogue to a lesion’s true shape. We denote this task lesion region
prediction (LRP). Finally, to further improve prediction accuracy, we introduce
another branch (green in Fig. 2) to build a feature pyramid, similar to previous
work [11], using a top-down pathway and skip connections. The top-down feature
maps are constructed using a ResNet-50-like structure. Coarse-to-fine feature
maps are first upsampled by a factor of 2, and corresponding fine-to-coarse maps
are transformed by 256 1 × 1 convolutional kernels. These are summed, and
resulting feature map will be smoothed using 256 3 × 3 convolutional kernels.
This ultimately produces a 5-channel 32 × 32 feature map, with one channel
dedicated to the LRP. The remaining TPP channels are inputted to a fully
connected layer outputting four transformation values, as shown in Fig. 2.

According to the predicted θ, a 2 × 3 matrix Θ can be calculated as

Θ =
[

s cos(α) −s sin(α) tx
s sin(α) s cos(α) ty

]

(2)

With Θ, the grid generator Tθ(G) will produce a parametrized sampling grid
(PSG), which is a set of coordinates (xs

i , y
s
i ) of source points where the input

image should be sampled to get the coordinates (xt
i, y

t
i) of target points of the

desired transformed image. Thus, the elements in PSG can be formulated as

[

xs
i

ys
i

]

=
[

s cos(α) −s sin(α) tx
s sin(α) s cos(α) ty

]

⎡

⎣

xt
i

yt
i

1

⎤

⎦ (3)
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Armed with the input image and PSG, we use bilinear interpolation as a
differentiable sampler to generate the transformed image. We set our canonical
space to (1) center the lesion region, (2) make the long diameter horizontal, and
3) remove most of THE background.

2.2 RECIST Estimation

After obtaining the transformed image, we need to estimate the positions of
keypoints, i.e., the endpoints of long/short diameters. If the keypoints can be
estimated precisely, RECIST annotation will be accurate. To achieve this goal,
a network should have a coherent understanding of the whole lesion region and
output high-resolution pixel-wise predictions. We use SHN [4] for this task, as
they have the capacity to capture the above features and have been successfully
used in human pose estimation.

SHN is composed of stacked hourglass networks, where each hourglass net-
work contains a downsampling and upsampling path, implemented by convolu-
tional, max pooling, and upsampling layers. The topology of these two parts is
symmetric, which means that for every layer present on the way down there is
a corresponding layer going up and they are combined with skip connections.
Multiple hourglass networks are stacked to form the final SHN by feeding the
output of one as input into the next, as shown in Fig. 2. Intermediate supervision
is used in SHN by applying a loss at the heatmaps produced by each hourglass
network, with the goal or improving predictions after each hourglass network.
The outputs of the last hourglass network are accepted as the final predicted
keypoint heatmaps. For SHN training, ground-truth keypoint heatmaps consist
of four 2D Gaussian maps (with standard deviation of 1 pixel) centered on the
endpoints of RECIST annotations. The final RECIST annotation is obtained
according to the maximum of each heatmap. In addition, as the two RECIST
axes should always be orthogonal, we also measure the cosine angle between
them, which should always be 1. More details on SHN can found in Newell
et al. [4].

2.3 Model Optimization

We use mean squared error (MSE) loss to optimize our network, where all loss
components are normalized into the interval [0, 1]. The STN losses are denoted
LLRP and LTPP , which measure error in the predicted masks and transforma-
tion parameters, respectively. Training first focuses on LRP: LSTN = 10LLRP +
LTPP . After convergence, the loss focuses on the TPP: LSTN = LLRP +10LTPP .
We first give a larger weight to LLRP to make STN focus more on LRP. After
convergence, LTPP is weighted more heavily, so that the optimization is empha-
sized more on TPP. For SHN training, the losses are denoted LHM and Lcos,
respectively, which measure error in the predicted heat maps and cosine angle,
respectively. Each contribute equally to the total SHN loss.

The STN and SHN networks are first trained separately and then combined
for joint training. During joint training, all losses contribute equally. Compared
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with training jointly and directly from scratch, our strategy has faster conver-
gence and better performance. We use stochastic gradient descent with a momen-
tum of 0.9, an initial learning rate of 5e−4, which is divided by 10 once the val-
idation loss is stable. After decreasing the learning rate twice, we stop training.
To enhance robustness we augment data by random translations, rotations, and
scales.

3 Experimental Results and Analyses

The proposed method is evaluated on the DeepLesion (DL) dataset [10], which
consists of 32, 735 images bookmarked and measured via RECIST annotations by
multiple radiologists over multiple years from 10, 594 studies of 4, 459 patients.
500 images are randomly selected from 200 patients as a test set. For each test
image, two extra RECIST annotations are labeled by another two experienced
radiologists (R1 and R2). Images from the other 3, 759 and 500 patients are
used as training and validation datasets, respectively. To mimic the behavior of
a radiologist roughly drawing a bounding box around the entire lesion, input
images are generated by randomly cropping a subimage whose region is 2 to 2.5
times as large as the lesion itself with random offsets. All images are resized to
128 × 128. The performance is measured by the mean and standard deviation

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 3. Given the input test image (a), we can obtain the predicted lesion mask (b),
the transformed image (c) from the STN, and the estimated keypoint heatmaps (d)–(g)
from the SHN. From (d)–(g), we obtain the estimated RECIST (h), which is close to
the annotations (i) labeled by radiologists. Red, green, and blue marks denote DL, R1,
and R2 annotations, respectively.
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Table 1. The mean and standard deviation of the differences of keypoint locations
(Loc.) and diameter lengths (Len.) between radiologist RECIST annotations and also
those obtained by different experimental configurations of our method. The unit of all
numbers is pixel in the original image resolution.

Reader DL R1 R2 Overall

Loc. Len. Loc. Len. Loc. Len. Loc. Len.

Long diameter

DL - - 8.16±10.2 4.11±5.87 9.10±11.6 5.21±7.42 8.63±10.9 4.66±6.71

R1 8.16±10.2 4.11±5.87 - - 6.63±11.0 3.39±5.62 7.40±10.6 3.75±5.76

R2 9.10±11.6 5.21±7.42 6.63±11.0 3.39±5.62 - - 7.87±11.3 4.30±6.65

SHN 10.2±12.3 6.73±9.42 10.4±12.4 6.94±9.83 10.8±12.6 7.13±10.4 10.5±12.5 6.93±9.87

STN+SHN 7.02±9.43 3.85±6.57 7.14±11.4 3.97±5.85 8.74±11.2 4.25±6.57 7.63±10.4 4.02±6.27

STN+SHN 5.94±8.13 3.54±5.18 6.23±9.49 3.62±5.31 6.45±10.5 3.90±6.21 6.21±9.32 3.69±5.59

STN+SHN 5.14±7.62 3.11±4.22 5.75±8.08 3.27±4.89 5.86±9.34 3.61±5.72 5.58±8.25 3.33±4.93

Short diameter

DL - - 7.69±9.07 3.41±4.72 8.35±9.44 3.55±5.24 8.02±9.26 3.48±4.99

R1 7.69±9.07 3.41±4.72 - - 6.13±8.68 2.47±4.27 6.91±8.91 2.94±4.53

R2 8.35±9.44 3.55±5.24 6.13±8.68 2.47±4.27 - - 7.24±9.13 3.01±4.81

SHN 9.31±11.8 5.02±7.04 9.59±12.0 5.19±7.35 9.83±12.1 5.37±7.69 9.58±11.8 5.19±7.38

STN+SHN 6.59±8.46 3.25±5.93 7.63±8.99 3.35±6.41 8.16±9.18 4.18±6.48 7.46±8.93 3.59±6.22

STN+SHN 5.52±7.74 2.79±4.57 5.71±8.06 2.87±4.62 6.01±8.39 2.96±5.09 5.75±8.01 2.87±4.73

STN+SHN 4.47±6.26 2.68±4.31 4.97±7.02 2.76±4.52 5.41±7.59 2.92±4.98 4.95±6.95 2.79±4.57

of the differences of keypoint locations and diameter lengths between RECIST
estimations and radiologist annotations.

Figure 3 shows five visual examples of the results. Figure 3(b) and (c)
demonstrate the effectiveness of our STN for lesion region normalization. With
the transformed image (Fig. 3(c)), the keypoint heatmaps (Fig. 3(d)–(g)) are
obtained using SHN. Figure 3(d) and (e) are the heatmaps of the left and right
endpoints of long diameter, respectively, while Fig. 3(f) and (g) are the top and
bottom endpoints of the short diameter, respectively. Generally, the endpoints
of long diameter can be found more easily than the ones of the short diame-
ter, explaining why the highlighted spots in Fig. 3(d) and (e) are smaller. As
Fig. 3(h) demonstrates, the RECIST estimation correspond well with those of
the radiologist annotations in Fig. 3(i). Note the high inter-reader variability.

To quantify this inter-reader variability, and how our approach measures
against it, we compare the DL, R1, R2 annotations and those of our method
against each other, computing the mean and standard deviation of differences
between axis locations and lengths. From the first three rows of each portion of
Table 1, the inter-reader variability of each set of annotations can be discerned.
The visual results in Fig. 3(h) and (i) suggest that our method corresponds well
to the radiologists’ annotations. To verify this, we compute the mean and stan-
dard deviation of the differences between the RECIST marks of our proposed
method (STN+SHN) against those of three sets of annotations, as listed in
the last row of each part of Table 1. From the results, the estimated RECIST
marks obtain the least mean difference and standard deviation in both loca-
tion and length, suggesting the proposed method produces more stable RECIST
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annotations than the radiologist readers on the DeepLesion dataset. Note that
the estimated RECIST marks are closest to the multi-radiologist annotations
from the DL dataset, most likely because these are the annotations used to train
our system. As such, this also suggest our method is able to generate a model
that aggregates training input from multiple radiologists and learns a common
knowledge that is not overfitted to any one rater’s tendencies.

To demonstrate the benefits of our enhancements to standard STN and SHN,
including the multi-task losses, we conduct the following experimental compar-
isons: (1) using SHN with only loss LHM (SHN), which can be considered as
the baseline; (2) using only the LTPP and LHM loss for the STN and SHN,
respectively (denoted STN+SHN); (3) using both the LTPP and LLRP losses
for the STN, but only the LHM loss for the SHN (STN+SHN); (4) the proposed
method with all LTPP , LLRP , LHM , and Lcos losses (STN+SHN). These results
are listed in the last four rows of each part in Table 1. From the results, we can see
that (1) the proposed method (STN+SHN) achieves the best performance. (2)
STN+SHN outperforms SHN, meaning that when lesion regions are normalized,
the keypoints of RECIST marks can be estimated more precisely. (3) STN+SHN
outperforms STN+SHN, meaning the localization network with multi-task learn-
ing can predict the transformation parameters more precisely than with only a
single task TPP. (4) STN+SHN outperforms STN+SHN, meaning the accuracy
of keypoint heatmaps can be improved by introducing the cosine loss to measure
axis orthogonality. All of the above results demonstrate the effectiveness of the
proposed method for RECIST estimation and the implemented modifications to
improve performance.

4 Conclusions

We propose a semi-automatic RECIST labeling method that uses a cascaded
CNN, comprised of enhanced STN and SHN. To improve the accuracy of trans-
formation parameters prediction, the STN is enhanced using multi-task learning
and an additional coarse-to-fine pathway. Moreover, an orthogonal constraint
loss is introduced for SHN training, improving results further. The experimental
results over the DeepLesion dataset demonstrate that the proposed method is
highly effective for RECIST estimation, producing annotations with less vari-
ability than those of two additional radiologist readers. The semi-automated
approach only requires a rough bounding box drawn by a radiologist, drastically
reducing annotation time. Moreover, if coupled with a reliable lesion localization
framework, our approach can be made fully automatic. As such, the proposed
method can potentially provide a highly positive impact to clinical workflows.
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