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Abstract. The accurate implantation of stereo-electroencephalography
(SEEG) electrodes is crucial for localising the seizure onset zone in
patients with refractory epilepsy. Electrode placement may differ from
planning due to instrument deflection during surgical insertion. We
present a regression-based model to predict instrument bending using
image features extracted from structural and diffusion images. We com-
pare three machine learning approaches: Random Forest, Feed-Forward
Neural Network and Long Short-Term Memory on accuracy in predict-
ing global instrument bending in the context of SEEG implantation.
We segment electrodes from post-implantation CT scans and interpolate
position at 1 mm intervals along the trajectory. Electrodes are modelled
as elastic rods to quantify 3 degree-of-freedom (DOF) bending using
Darboux vectors. We train our models to predict instrument bending
from image features. We then iteratively infer instrument positions from
the predicted bending. In 32 SEEG post-implantation cases we were
able to predict trajectory position with a MAE of 0.49 mm using RF.
Comparatively a FFNN had MAE of 0.71 mm and LSTM had a MAE
of 0.93 mm.
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1 Introduction

Minimally-invasive surgical interventions use thin, tubular, and flexible instru-
ments inserted through the skull to target small regions of interest with the aim
of acquiring data (e.g. electroencephalography, biopsy) or delivering therapy
(e.g. injection, stimulation, ablation). The accurate placement of these instru-
ments is important for patient safety, accurate diagnosis, and treatment efficacy
[1,11,22]. Preoperative trajectory planning aims to minimise target point errors
whilst avoiding critical structures [9,18]. However, accurate surgical implantation
may be difficult to achieve as instruments may deflect during insertion. Deflec-
tion may be caused by instrument design (mechanical properties, tip shape),
tissue properties (stiffness, inhomogeneity, anisotropy), insertion forces (depth,
velocity, steering) and physiological processes [11,17]. The prediction of instru-
ment trajectories inserted into deformable tissue is a challenging problem and
an active area of research [5,9,17].

Needle-Tissue Interaction Models. Modelling of trajectory deflection is
mostly based on mechanical modelling of tissue-needle interaction. These meth-
ods require accurate extraction of the mechanical properties of tissue and instru-
ment together with insertion measurements (e.g. forces, velocities) to accurately
predict instrument deflection. Typically such methods use approximations or
simplifications derived from hand-crafted modelling techniques to account for
unknown parameters. Different instrument models have been proposed includ-
ing cantilever beams [17], Finite Element Methods (FEM) [5,9], Timoshenko
formulation, and Cosserat rods [12,19]. A mechanical model proposed by [17]
predicts needle deflection during needle-tissue interaction by modelling forces at
the tip (dependent on tissue stiffness) and friction forces along the needle shaft.
A simulation-based approach for haptic radiofrequency ablation proposed by [9]
iteratively computes instrument deflection during insertion using a FEM.

Machine Learning Models. Several approaches use data-driven machine
learning models to predict trajectories (e.g. vehicles, rigged skeleton mod-
els) based on spatio-temporal data. These model-free approaches require large
amounts of data that must be general enough to predict unseen cases. While, the
application of machine learning to predict instrument bending has to the best of
our knowledge not yet been presented, these approaches represent a promising
avenue to learn features of bending from real world data (i.e. previous examples of
instrument trajectories and medical images). Machine learning techniques have
long been applied to prediction of spatio-temporal data, most recently with Deep
Learning techniques [7]. Recurrent Neural Networks (RNNs), in particular Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs), have been
applied to predict trajectories by taking into account data at previous timesteps
and learning in sequences. An example of this is the prediction of the direction
of white matter fibre streamlines from diffusion weighted imaging (DWI) [15].

Our Contributions. We present a novel machine learning regression approach
to predict global instrument bending from image features. Instruments are mod-
elled as elastic rods with 3DOF bending and twisting. This method is applied
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Fig. 1. Top: Imaging modalities: (a) post-implantation CT scan, (b) MRI, (c) prob-
abilities from segmentation, (d) parcellation, (e) dMRI. Bottom: (f) SEEG electrode
segmentation and interaction of electrodes with surface models including: (g) scalp,
(h) cortex (in translucent pink), white matter (in white) and (i) deep grey matter (in
blue).

to predicted intra-cranial electrode bending using features extracted from struc-
tural T1-weighted (T1-w) and diffusion MRI (dMRI).

2 Methods

Image Acquisition and Preprocessing. Prior to electrode implantation, MRI
data was acquired either on a 3T GE Signa HDx, consisting of a 3D-T1-w
and single-shell dMRI scan (as in [20]), or on a 3T GE MR750, using a T1-w
MPRAGE and a multi-shell dMRI scan (as in [13]). dMRI was corrected for
susceptibility-induced and eddy-current induced distortions using FSLs topup
and eddy, respectively. The T1-w MRI was used to compute a brain parcella-
tion and segmentation probabilities using geodesic information flows (GIF) [2]
(Fig. 1). Smoothed 3D polygon meshes of the scalp [4] and superficial grey, white,
and deep grey matter were generated from the parcellation. dMRI was modelled
as a multi-tissue constrained-spherical deconvolution (MT-CSD) [10] with the
Dhollander algorithm [3] implemented in MRtrix3 [21]. We characterise fibre
direction and density using the ‘fixel’ framework [16]. Rigid registration of the
CT image to the T1-w MRI was performed by minimising normalised mutual
information (NMI) [14]. Similarly, dMRI images were registered by minimising
the NMI between the T1-w MRI and b0 dMRI scan. A CT image was acquired
immediately after electrode implantation.

Instrument Segmentation and Interpolation. Automatic segmentation of
SEEG electrode contacts was performed [8] (Fig. 1). We interpolated instrument
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Fig. 2. Top: Interpolation points (red circles) along trajectory with structural, white
matter fibre tracks-related and trajectory-related features. Bottom: Elastic rod model
where interpolated points are particles. Material frames and their rate of change (Dar-
boux vectors) are computed to characterise local/global bending.

position from the electrode contact positions at 1 mm intervals using a shape-
preserving piecewise cubic Hermite interpolation (PCHIP) [6]. For each position,
the following set of features were calculated (Fig. 2, top).

– Structural: voxel probability of being background, cerebral spin fluid, grey
matter, white matter, deep grey matter and brain stem; and the brain region.

– White matter fibre tracks: number and direction of crossing fibres, fibre
density and angle of the fibre with respect to the trajectory.

– Trajectory: number of regions traversed, length of region at position, angle
with respect to surfaces scalp, superficial grey, white, and deep grey matter,
distance to grey matter, distance to cortex, distance to previous and next
region, and distance from scalp to cortex and from cortex to white matter.

Instrument Bending Model. Instruments were modelled as Cosserat elastic
rods in the Position-based Dynamics library. Particles were placed at the inter-
polated instrument position. Ghosts particles were placed orthogonally half-way
between each particle. A material frame is computed between particles with a
unit vector aligned tangentially to the direction of the rod and two orthonormal
vectors. The rate of change between two consecutive material frames was com-
puted as a Darboux vector [12] (Fig. 2, bottom), where the x, y and z components
indicate lateral bending, upward/downward bending and twisting, respectively.
For each particle two Darboux vectors were computed: (a) local bending (between
material frames of neighbouring particles) and (b) global bending (between the
material frame corresponding to the first particle and the current particle).

Training Model. An Ordinary Least Squares multiple regression was executed
(Statsmodels library) to determine which features have a statistically significant
effect on bending. Three regression models were built and evaluated: (a) Random
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Forest (RF), (b) Feed-Forward Neural Network (FFNN) and (c) LSTM (see
Table 1). Global bending at the electrode tip was used as the predicted output
of the regression model. Local bending and previous global bending are used as
input features.

Table 1. Training model architecture

Model ML Library Topology Details Activation Noise

RF scikit-learn
trees: 200
max. tree depth: 50 No

FFNN Keras with
Tensorflow
as a backend

layers: 3 Multiple
Layer Perceptron
hidden units: equal to
number of features

- L2 normalisation
(hyperparameter of 1e-4)
- normal function to
initialise weights

- hidden layer:
scaled exponential
linear unit (SELU)
- output layer: linear

Gaussian
(μ = 0, σ = 0.0025)

LSTM

layers:
- Input layer
- 3 LSTM layers
(200, 100, 50 units)
- Dropout (0.2)
between LSTM layers
- Dense

sequences of data
(window length of 5
interpolated points)

- output layer: linear No

3 Experimental Design and Validation

We trained our models from 32 post-implantation SEEG cases (296 electrodes,
13107 interpolation points) comprising two different surgical approaches, placing
a guiding stylet close to or far from target point. Through multiple linear regres-
sion, we found a significant effect on instrument bending of the features listed in
Table 2 (R2 = 0.313). The data from these features (27 in total) was normalised.
We created dichotomous variables for the treating categorical variables.

A 5-fold cross validation was performed for each model (i.e. RF, FFNN and
LSTM). For each fold, we split the data into three sets. A validation set contains
a trajectory randomly selected from 15 SEEG cases (i.e. 15 trajectories in total).
The remaining data is split into a train set containing 80% and a test set con-
taining 20%. We then conducted two experiments using these three sets: (a)
model validation and (b) trajectory accuracy. In experiment (a), we trained our
regressor models using the train set and evaluated the inference scores against
the test set. The models were trained and average prediction scores across folds
are reported in Table 3.

In experiment (b), we selected 30 trajectories from the validation set across
folds (15, 4, 4, 4, 3 respectively). Using the trained models of the respective
folds, the insertion of an electrode was simulated iteratively starting with the
first six interpolated points (sequence length for LSTM) at 1 mm intervals from
the electrode bolt. Details of the simulation loop can be found in Algorithm1.

We then evaluated the accuracy of the trajectory bending prediction (Fig. 3).
Distances between true and predicted trajectories were measured. RF had the
lowest MAE (μ = 0.49, σ = 0.43), followed by FFNN (μ = 0.71, σ = 0.41)
and by LSTM (μ = 0.93, σ = 0.65). Under the current training paradigm, we
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Table 2. Features with significant effect (p < 0.05) on instrument bending

Positively correlated Coefficient Negatively
correlated

Coefficient

Displacement w.r.t. planned
trajectory

0.2753 x-component of
previous bending

−0.0533

z-component of previous bending 0.1315 y-component of
previous bending

−0.0472

Angle w.r.t. white matter 0.0379 Number of fibre
tracks

−0.0157

Distance to previous region 0.0346 Length of the
current traversed
region

−0.0089

Distance of cortex traversed 0.0343 Using stylet −0.0048

Probabilities of segmentation of
deep grey matter

0.0328

Probabilities of segmentation of
white matter

0.0320

Probabilities of segmentation of
grey matter

0.0279

MRI voxel intensity 0.0240

Angle w.r.t. cortex 0.0215

Closest distance to grey matter 0.0198

Regions traversed 0.0135

Target point region categories
(with the exception of central and
insula)

observed that LSTMs tend to accumulate error (given the current accuracy of
the 5-fold cross validation in Table 3). Further analysis and method development
is required to keep predicted electrode bending within realistic values.

Table 3. Performance of bending prediction of (a) RF, FFNN and LSTM models

Model K-Fold μ (σ)

MSE MAE R2

RF 0.0004 (0.0001) 0.0077 (0.0007) 0.8533 (0.0260)

FFNN 0.0004 (0.0001) 0.0079 (0.0007) 0.8540 (0.0230)

LSTM 0.0007 (0.0002) 0.0126 (0.0015) 0.6583 (0.1043)
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Algorithm 1. Simulation of electrode implantation based on predicted bending
1: Load images and 3D meshes
2: do
3: Generate trajectory features: The Medical Imaging Interaction Toolkit (MITK)

The Visualisation Toolkit (VTK)
4: - load position of particles along trajectory
5: - generate features from imaging along inserted trajectory and save
6: Predict bending: Keras Python deep learning library / Tensorflow ML framework
7: - load image features along trajectory of electrode
8: - normalise and categorise features
9: - generate sequences (only for LSTM)
10: - load trained model for the corresponding fold
11: - predict global bending (Darboux vector)
12: Compute position of electrode tip: Position-based dynamics library
13: - create an elastic rod consisting of three particles (and two ghost particles)

in the direction of the trajectory
14: - fix two of the particles (and one ghost particle)
15: - apply constraints (distance, perpendicular bisector, ghost point

edge distance, and Darboux vector)
16: - set predicted bending as a resting Darboux vector
17: - compute position of particle (tip of electrode) and append to trajectory
18: while current insertion depth < planned insertion depth

Fig. 3. Prediction accuracy. Top: Mean average error (MAE) of predicted trajectories
(RF, FFNN, LSTM) with respect to True trajectory. X-axis indicates the MAE of
True trajectory with respect to Plan (rigid) trajectory. Size of circle indicates standard
deviation (see two examples for reference). Bottom: 3D rendering of planned (in white),
true (in yellow) and predicted (RF in red, FFNN in green, LSTM in blue) electrode
trajectories of two examples highlighted in scatter plot above.

4 Conclusion

We present a novel machine learning regression model to predict local instru-
ment bending from image features. The instrument is modelled as an elastic
rod, with 3DOF, that traverses soft tissue, characterised as inhomogeneous and
anisotropic. Our method allows for the prediction of orientation and position
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along the instrument trajectory. The main limitation of our current work is that
we study instrument bending in a specific application (SEEG electrode implan-
tation). In future work, we will validate our method in other applications. Addi-
tionally, we will integrate our model into a trajectory planning algorithm with
the aim of improved pre-operative planning.
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