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Abstract. The need for automatic surgical skills assessment is increas-
ing, especially because manual feedback from senior surgeons observ-
ing junior surgeons is prone to subjectivity and time consuming. Thus,
automating surgical skills evaluation is a very important step towards
improving surgical practice. In this paper, we designed a Convolutional
Neural Network (CNN) to evaluate surgeon skills by extracting pat-
terns in the surgeon motions performed in robotic surgery. The proposed
method is validated on the JIGSAWS dataset and achieved very com-
petitive results with 100% accuracy on the suturing and needle passing
tasks. While we leveraged from the CNNs efficiency, we also managed
to mitigate its black-box effect using class activation map. This feature
allows our method to automatically highlight which parts of the surgi-
cal task influenced the skill prediction and can be used to explain the
classification and to provide personalized feedback to the trainee.
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1 Introduction

Over the past one hundred years, the classical training program of Dr. William
Halsted has governed surgical training in different parts of the world [15]. His
teaching philosophy of “see one, do one, teach one” is still one of the most
practiced methods to this day [1]. The idea is that the trainee could become
an expert surgeon by watching and assisting in mentored surgeries [15]. These
training methods, although broadly used, lack of an objective surgical skill eval-
uation technique [9]. Conventional surgical skill assessment is currently based on
checklists that are filled by an expert surgeon observing the surgery [14]. In an
attempt to evaluate surgical skills without relying on an expert’s opinion, Objec-
tive Structured Assessment of Technical Skills (OSATS) has been proposed and
is used in clinical practice [12]. Unfortunately, this type of observational eval-
uation is still prone to several external and subjective variables: the checklists’
development process, the inter-rater reliability and the evaluator bias [7].
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Other studies showed that a strong relationship exists between the postop-
erative outcomes and the technical skill of a surgeon [2]. This type of approach
suffers from the fact that a surgery’s outcome also depends on the patient’s
physiological characteristics [9]. In addition, acquiring such type of data is very
difficult, which makes these skill evaluation methods difficult to apply for surgi-
cal training. Recent advances in surgical robotics such as the da Vinci surgical
robot (Intuitive Surgical Inc. Sunnyvale, CA) enabled the collection of motion
and video data from different surgical activities. Hence, an alternative for check-
lists and outcome-based methods is to extract, from these motion data, global
movement features such as the surgical task’s time completion, speed, curva-
ture, motion smoothness and other holistic features [3,9,19]. Although most of
these methods are efficient, it is not clear how they could be used to provide
a detailed and constructive feedback for the trainee to go beyond the simple
classification into a category (i.e. novice, expert, etc.). This is problematic as
studies [8] showed that feedback on medical practice allows surgeons to improve
their performance and reach higher skill levels.

Recently, a new field named Surgical Data Science [11] has emerged thanks
to the increasing access to large amounts of complex data which pertain to the
patient, the staff and sensors for perceiving the patient and procedure related
data such as videos and kinematic variables [5]. As an alternative to extracting
global movement features, recent studies tend to break down surgical tasks into
smaller segments called surgical gestures, manually before the training phase,
and assess the performance of the surgical task based on the assessment of these
gestures [13]. Although these methods obtained very accurate and promising
results in terms of surgical skill evaluation, they require a huge amount of labeled
gestures for the training phase [13]. We have identified two main limits in the
existing approaches that classify a surgeon’s skill level based on the kinematic
data. First is the lack of an interpretable result of skill evaluation usable by the
trainee to achieve higher skill levels. Additionally current state of the art Hid-
den Markov Models require gesture boundaries that are pre-defined by human
annotators which is time consuming and prone to inter-annotator reliability [16].

In this paper, we propose a new architecture of Convolutional Neural Net-
works (CNN) dedicated to surgical skill evaluation (Fig. 1). By using one dimen-
sional filters over the kinematic data, we mitigate the need to pre-define sensitive
and unreliable gesture boundaries. The original hierarchical structure of our deep
learning model enables us to represent the gestures in latent low-level variables
(first and second layers), as well as capturing global information related to the
surgical skill level (third layer). To provide interpretable feedback, instead of
using a final fully-connected layer like most traditional approaches [18], we place
a Global Average Pooling (GAP) layer which enables us to benefit from the
Class Activation Map [18] (CAM) to visualize which parts of the surgical task
contributed the most to the surgical skill classification (Fig. 2). We demonstrate
the accuracy of our approach using a standardized experimental setup on the
largest publicly available dataset for surgical data analysis: the JHU-ISI Gesture
and Skill Assessment Working Set (JIGSAWS) [5]. The main contribution of our
work is to show that deep learning can be used to understand the latent and
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Fig. 1. The network architecture whose input is a surgical task with variable length
l recorded by the four manipulators (ML: master left, MR: master right, SL: slave
left, SR: slave right) of the da Vinci surgical system. The output is a surgical skill
prediction (N: Novice, I: Intermediate and E: Expert)

complex structures of what constitutes a surgical skill, especially that there is
still much to be learned on what is exactly a surgical skill [9].

2 Method

2.1 Dataset

We first present briefly the dataset used in this paper as we rely on features defi-
nition to describe our method. The JIGSAWS [5] dataset has been collected from
eight right-handed subjects with three different skill levels (Novice (N), Inter-
mediate (I) and Expert (E)) performing three different surgical tasks (suturing,
needle passing and knot tying) using the da Vinci surgical system. Each subject
performed five trials of each task. For each trial the kinematic and video data
were recorded.

In our work, we only focused on kinematic data which are numeric variables
of four manipulators: left and right masters (controlled directly by the subject’s
hands) and left and right slaves (controlled indirectly by the subject via the
master manipulators). These kinematic variables (76 in total) are captured at
a frequency equal to 30 frames per second for each trial. We considered each
trial as a multivariate time series (MTS) and designed a one dimensional CNN
dedicated to learn automatically useful features for surgical skill classification.

2.2 Architecture

Our approach takes inspiration of the recent success of CNN for time series clas-
sification [17]. The proposed architecture (Fig. 1) has been specifically designed
to classify surgical skills using kinematic data. The input of the CNN is a MTS
with variable length l and 76 channels. The output layer contains the surgical
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skill level (N, I, E). Comparing to CNNs for image classification, where usu-
ally the network’s input has two dimensions (width and height) and 3 channels
(RGB), our network’s input is a time series with one dimension (length l of the
surgical task) and 76 channels (the kinematic variables x, y, z, x′, etc.).

The main challenge we encountered when designing our network was the huge
number of input channels (76) compared to the RGB channels (3) for the image
classification task. Therefore, instead of applying the convolutions over the 76
channels, we proposed to carry out different convolutions for each cluster and
sub-cluster of channels. In order to decide which channels should be grouped
together, we used domain knowledge when clustering the channels.

First we divide the 76 variables into four different clusters, such as each
cluster contains the variables from one of the four manipulators: the 1st, 2nd, 3rd

and 4th clusters correspond respectively to the four manipulators (ML: master
left, MR: master right, SL: slave left and SR: slave right) of the da Vinci surgical
system. Thus, each cluster contains 19 of the 76 total kinematic variables.

Next, each cluster of 19 variables is split into five different sub-clusters such
as each sub-cluster contains variables that we hypothesize are highly correlated.
For each cluster, the variables are grouped into five sub-clusters: 1st sub-cluster
with 3 variables for the Cartesian coordinates (x, y, z); 2nd sub-cluster with 3
variables for the linear velocity (x′, y′, z′); 3rd sub-cluster with 3 variables for the
rotational velocity (α′, β′, γ′); 4th sub-cluster with 9 variables for the rotation
matrix R; 5th sub-cluster with 1 variable for the gripper angular velocity (θ).

Figure 1 shows how the convolutions in the first layer are different for each
sub-cluster of channels. Following the same reasoning, the convolutions in the
second layer are different for each cluster of channels (ML, MR, SL and SR).
However, in the third layer, the same convolutions are applied for all channels.

In order to reduce the number of parameters in our model and benefit from
the CAM method [18], we replaced the fully-connected layer with a GAP opera-
tion after the third convolutional layer. This results in a summarized MTS that
shrinks from a length l to 1, while preserving the same number of channels in
the third layer. As for the output layer, we use a fully-connected softmax layer
with three neurons, one for each class (N, I, E).

Without any cross-validation, we choose to use 8 filters at the first convo-
lutional layer, then we increase the number of filters (by a factor of 2), thus
balancing the number of parameters for each layer while going deeper into the
network. The Rectified Linear Unit (ReLU) activation function is employed for
the three convolutional layers with a filter size of 3 and a stride of 1.

2.3 Training and Testing

To train the network, we used the multinomial cross-entropy as our objective
cost function. The network’s parameters were optimized using Adam [10]. Fol-
lowing [17], without any fine-tuning, the learning rate was set to 0.001 and the
exponential decay rates of the first and second moment estimates were set to
0.9 and 0.999 respectively. Each trial was used in a forward-pass followed by
a back-propagation update of the weights which were initialized using Glorot’s
uniform initialization [6]. Before each training epoch, the train set was randomly
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shuffled. We trained the network for 1000 epochs, then by saving the model at
each training epoch, we chose the one that minimized the objective cost function
on a random (non-seen) split from the training set. Thus, we only validate the
number of epochs since no extra-computation is needed to perform this step.
Finally, to avoid overfitting, we added a l2 regularization parameter equal to
10−5. Since we did not fine-tune the model’s hyper-parameters, the same net-
work architecture with the same hyper-parameters was trained on each surgical
task resulting in three different models1.

To evaluate our approach we adopted the standard benchmark configuration,
Leave One Super Trial Out (LOSO) [1]: for each iteration of cross-validation (five
in total), one trial of each subject was left out for the test and the remaining
trials were used for training.

2.4 Class Activation Map

By employing a GAP layer, we benefit from the CAM [18] method, which makes
it possible to identify which regions of the surgical task contributed the most to
a certain class identification. Let Ak(t) be the result of the third convolutional
layer which is a MTS with K channels (in our case K is equal to 32 filters and t
denotes the time dimension). Let wc

k be the weight between the output neuron
of class c and the kth filter. Since a GAP layer is used, the input to the output
neuron of class c (zc) and the CAM (Mc(t)) can be defined as:

zc =
∑

k

wc
k

∑

t

Ak(t) =
∑

t

∑

k

wc
kAk(t); Mc(t) =

∑

k

wc
kAk(t) (1)

In order to avoid upsampling the CAM, we padded the input of each convolution
with zeros, thus preserving the initial MTS length l throughout the convolutions.

3 Results

3.1 Surgical Skill Classification

Table 1 reports the micro and macro measures (defined in [1]) of four different
methods for the surgeons’ skill classification of the three surgical tasks. For our
approach (CNN), we report the average of 40 runs to eliminate any bias due to
the random seed. From these results, it appears that the CNN method is much
more accurate than the other approaches with 100% accuracy for the suturing
and needle passing tasks. As for the knot tying task, we report 92.1% and 93.2%
respectively for the micro and macro configurations. Indeed, for knot tying, the
model is less accurate compared to the other two. This is due to the complexity
of this task, which is in compliance with the results of the other approaches.

1 Our source code is available on https://germain-forestier.info/src/miccai2018/.

https://germain-forestier.info/src/miccai2018/
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In [13], the authors designed Sparse Hidden Markov Models (S-HMM) to eval-
uate the surgical skills. Although the latter method utilizes the gesture bound-
aries during the training phase, our approach achieves much higher accuracy
while still providing the trainee with interpretable skill evaluation.

Approximate Entropy (ApEn) is used to extract features from each trial [19],
which are then fed to a nearest neighbor classifier. Although both methods
(ApEn and CNN) achieve state of the art results with 100% accuracy for the
suturing and needle passing surgical tasks, it is not clear how ApEn could be
extended to provide feedback for the trainee. In addition, we hypothesize that
by doing cross-validation and hyper-parameters fine tuning, we could squeeze
higher accuracy from the CNN, especially for the knot tying task.

Finally, in [4], the authors introduce a sliding window technique with a dis-
cretization method to transform the MTS into bag of words. Then, they build
a vector for each class from the frequency of the words, which is compared to
vectors of the MTS in the test set to identify the nearest neighbor with a cosine
similarity metric. The authors emphasized the need to obtain interpretable surgi-
cal skill evaluation, which justified their relatively low accuracy. On contrast, our

Table 1. Surgical skill classification results (%)

Method Suturing Needle passing Knot tying

Micro Macro Micro Macro Micro Macro

S-HMM [13] 97.4 n/a 96.2 n/a 94.4 n/a

ApEn [19] 100 n/a 100 n/a 99.9 n/a

Sax-Vsm [4] 89.7 86.7 96.3 95.8 61.1 53.3

CNN (proposed) 100 100 100 100 92.1 93.2

(a) The last frame of subject
(Novice) H’s fourth trial of the
suturing task.

reason for
being classified
as a novice

Y
X

Z

% of contribution in a classification

0

—

100

—

(b) Trial’s corresponding trajec-
tory for the left master manip-
ulator (best viewed in color).

Fig. 2. Example of feedback using Class Activation Map (a video illustrating this
feedback is available on https://germain-forestier.info/src/miccai2018/).

https://germain-forestier.info/src/miccai2018/
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approach does not trade off accuracy for feedback: CNN is much more accurate
and equally interpretable.

3.2 Feedback Visualization

The CAM technique allows us to visualize which parts of the trial contributes the
most to a certain skill classification. Patterns in movements could be understood
by identifying for example discriminative behaviors specific to a novice or an
expert. We can also pinpoint to the trainees their good/bad movements in order
to improve themselves and achieve potentially higher skill levels.

Figure 2 gives an example on how to visualize the feedback for the trainee by
constructing a heatmap from the CAM. A trial of a novice subject is studied:
its last frame is shown in Fig. 2a and its corresponding heatmap is illustrated
in Fig. 2b. In the latter, the model was able to detect which movements (red
area) were the main reason behind subject H’s classification (as a novice). This
feedback could be used to explain to a young surgeon which movements are
classifying him/her as a novice and which ones are classifying another subject
as an expert. Thus, the feedback could guide the novices into becoming experts.

4 Conclusion

In this paper, we presented a new method for classifying surgical skills. By design-
ing a specific CNN, we achieved 100% accuracy, while providing interpretability
that justifies a certain skill evaluation, which reduces the CNN’s black-box effect.

In our future work, due to the natural extension of CNNs to image classi-
fication, we aim at developing a unified CNN framework that uses both video
and kinematic data to classify surgical skills accurately and to provide highly
interpretable feedback for the trainee.
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