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Abstract. Anterior Vertebral Body Growth Modulation (AVBGM) is a
minimally invasive surgical technique that gradually corrects spine defor-
mities while preserving lumbar motion. However the selection of poten-
tial surgical patients is currently based on clinical judgment and would
be facilitated by the identification of patients responding to AVBGM
prior to surgery. We introduce a statistical framework for predicting
the surgical outcomes following AVBGM in adolescents with idiopathic
scoliosis. A discriminant manifold is first constructed to maximize the
separation between responsive and non-responsive groups of patients
treated with AVBGM for scoliosis. The model then uses subject-specific
correction trajectories based on articulated transformations in order to
map spine correction profiles to a group-average piecewise-geodesic path.
Spine correction trajectories are described in a piecewise-geodesic fash-
ion to account for varying times at follow-up exams, regressing the curve
via a quadratic optimization process. To predict the evolution of cor-
rection, a baseline reconstruction is projected onto the manifold, from
which a spatiotemporal regression model is built from parallel transport
curves inferred from neighboring exemplars. The model was trained on
438 reconstructions and tested on 56 subjects using 3D spine reconstruc-
tions from follow-up exams, with the probabilistic framework yielding
accurate results with differences of 2.1 ± 0.6◦ in main curve angulation,
and generating models similar to biomechanical simulations.

1 Introduction

Spinal morphology and more particularly 3D morphometric parameters, have
demonstrated significant potential in assessing the risk of spinal disease progres-
sion. For spinal deformities such as adolescent idiopathic scoliosis (AIS), person-
alized 3D reconstructions generated from radiographs allows surgeons to assess
the severity and decide on efficient treatment options. A recently introduced
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minimally invasive surgical technique called Anterior Vertebral Body Growth
Modulation (AVBGM) consists of instrumenting the spine with traditional verte-
bral implants to link a segment of vertebrae together by a flexible polypropylene
cable applied to the spine anteriorly. The fusion-less technique applies compres-
sive forces on the convex side of the spinal curve, thereby modulating the distri-
bution of pressure on the vertebral growth plates. In combination with natural
bone growth, this allows to retain spine flexibility [1]. While this new surgical
technique showed promising results for skeletally immature patients [2], difficul-
ties were reported to predict short and long-term post-operative correction [3].
Biomechanical models were shown to reproduce surgical outcomes, but are not
adapted for real-time surgical applications [4].

A recent study evaluated differences in hand-crafted 3D parameters in pro-
gressive AIS groups using images from the patient’s first visit [5] to predict
progression, by manually selecting the best features that can characterize the
intrinsic nature of 3D spines. On the other hand, dimensionally-reduced growth
trajectories of various anatomical sites have been investigated in neurodevelop-
ment studies for newborns, based on geodesic shape regression to compute the
diffeomorphisms based on image time series of a population [6]. These regression
models were also used to estimate spatio-temporal evolution of the cerebral cor-
tex, by automatically identifying the points of interest and inertia between the
first and follow-up images based on non-rigid transformations [7]. The concept
of parallel transport curves in the tangent space from low-dimensional mani-
folds proposed by Schiratti et al. [8] was used to analyze shape morphology [9]
and adapted for radiotherapy response [10], but lacks the capability to predict
correction from applied forces following surgery.

This paper presents a prediction model for patient response to AVBGM
from pre-operative 3D spine models reconstructed from biplanar X-ray images
(Fig. 1). The method first trains a piecewise-geodesic manifold using a collection
of pre-operative and longitudinal 3D reconstructions of the spine acquired dur-
ing follow-up evaluations of patients treated with AVBGM for AIS. A discrimi-
nant adjacency matrix is constructed to separate responding and non-responding
patients. During testing, an unseen baseline spine model is projected onto the
manifold, where a piecewise-geodesic curve describing spatiotemporal evolution
is regressed using discrete approximations, from which the curvature evolution
is inferred, yielding a prediction of the intervertebral displacements and shape
morphology describing deformation correction. The main contribution of this
paper is the introduction of a piecewise-geodesic transport curve in the tangent
space from low-dimensional samples designed for the correction of spinal defor-
mities, where a new time-warping function controlling the rate of correction is
obtained from clinical parameters.

2 Method

2.1 Discriminant Embedding of Longitudinal Spine Models

A sample spine reconstruction is represented by S = {s1, . . . , sm}, modelling a
series of m = 17 vertebral shapes. For each si vertebra, template-based models
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Fig. 1. Proposed prediction framework for spine surgery outcomes. In the training
phase, a dataset of spine models are embedded in a spatio-temporal manifold M,
into responsive (R) or non-responsive (NR) groups. During testing, an unseen baseline
3D spine reconstruction yq is projected on M using fNW based on Nadaraya-Watson
kernels. The closest samples to the projected point x are selected to regress the spa-
tiotemporal curve γ used for predicting the correction due with AVBGM.

are obtained where vertex coordinates have one-to-one correspondences between
samples. In addition to the mesh-based representation, each model si possesses
a list of annotated landmarks to compute local intervertebral rigid transforma-
tions, such that A = [T1, T2, . . . , Tm], with Ti = {R, t} a rigid inter-vertebral
transform. Hence, the overall shape of the spine is described as a vector of
sequential registrations assigned to each vertebral level, whereby considering the
ensemble of transformations, we obtain a combination of previous transforms:

yi = [T1, s1;T1 ◦ T2, s2, . . . , T1 ◦ T2 ◦ . . . ◦ Tm, sm] (1)

using recursive compositions. The feature array yi dictates the location and
rotation of the object constellation, while procuring the morphology of the verte-
brae S. The model is deformed by applying displacements to the inter-vertebral
parameters. By extending this to the entire absolute vector representing the
spine model, this then achieves a global deformation. In this case, registrations
are described in the reference coordinate system of the lower vertebra, corre-
sponding to it’s principal axes of the cuneiform shape with the origin positioned
at the center of mass of the vertebra. The rigid transformations are the combi-
nation of a rotation matrix R and a translation vector t. We formulate the rigid
transformation T = {R, t} of a vertebra mesh si as y = Rx+t where x, y, t ∈ �3.
Composition is given by T1 ◦ T2 = {R1R2, R1t2 + t1}.

We propose to embed a collection of non-responsive (NR) and (2) responsive
(R) patients to AVBGM which will offer a maximal separation between the
classes, by using a discriminant graph-embedding. Here, n labelled points Y =
{(yi, li, ti)}n

i=1 defined in R
D are embedded in the low-dimensional manifold

M, where li describes the label (NR or R) and ti defines the time of follow-
up. We assume that for the sampled data, an underlying manifold of the high-
dimensional data exists such that X = {(xi, li, ti)}n

i=1 defined in R
d. We rely

on the assumption that a locally linear mapping Mi ∈ R
D×d exists, where

local neighbourhoods are defined as tangent planes estimated with yj − yi and
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xj − xi, describing the paired distances between linked neighbours i, j. Hence,
the relationship can be established as yj − yi ≈ Mi(xj − xi).

Because the discriminant manifold structure in R
d requires to maintain the

local structure of the underlying data, a undirected similarity graph G = (V ,W )
is built, where each node V are connected to each other with edges that are
weighted with the graph W . The overall structure of M is therefore defined with
Ww for feature vectors belonging to the same class and W b, which separate
features from both classes. During the embedding of the discriminant locally
linear latent manifold, data samples are divided between Ww and W b.

2.2 Piecewise-Geodesic Spatiotemporal Manifold

Once sample points xi are in manifold space, the objective is to regress a regular
and smooth piecewise-geodesic curve γ : [t1, tN ] that accurately fits the embed-
ded data describing the spatiotemporal correction following AVBGM within a 2
year period. For each sample data xi, the K closest individuals demonstrating
similar baseline features are identified from the embedded data, creating neigh-
borhoods N (xq) with measurements at different time points, thus creating a
low-dimensional Riemannian manifold where data points xi,j , with i denoting a
particular individual, j the time-point measurement and j = 0 the pre-operative
model. By assuming the manifold domain is complete and piecewise-geodesic
curves are defined for each time trajectories, time-labelled data can be regressed
continuously in R

D, thereby creating smooth curves in time intervals described
by samples in R

d.
However, due to the fact the representation of the continuous curve is a

variational problem of infinite dimensional space, the implementation follows a
discretization process which is derived from the procedure in [11], such that:

E(γ) =
1

Kd

Kd∑

i=1

tN∑

j=0

wi‖γ(ti,j) − (xi,j − (xi,0 − xq))‖2

+
λ

2

Kd∑

i=1

αi‖vi‖2 +
μ

2

Kd∑

i=1

βi‖ai‖2. (2)

This minimization process simplifies the problem to a quadratic optimization,
solved with LU decomposition. The piecewise nature is represented by the term
Kd ∈ N (xq), defined as samples along γ. The 1st component of Eq. (2) is a
penalty term to minimize the geodesic distance between samples xi,j and the
regressed curve, where wi are weight variables based on sample distances. This
helps regress a curve that will lie close to xi,j , shifted by xq in order to have the
initial reconstructions co-registered. The 2nd term represents the velocity of the
curve (defined by vi, approximating γ̇(ti)), minimizing the L2 distance of the
1st derivative of γ. By minimizing the value of the curve’s first derivatives, this
prohibits any discontinuities or rapid transitions of the curve’s direction, and is
modulated by αi. Finally, an acceleration penalty term (defined by ai) focuses
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on the 2nd derivative of γ with respect to ti by minimizing the L2 norm. The
acceleration is modulated by βi. Estimates for vi and ai (weighted by {λ, μ},
respectively), are generated using geometric finite differences. These estimates
dictates the forward and backward step-size on the regressed curve, leading to
directional vectors in M as shown in [11]. In order to minimize E(γ), a non-linear
conjugate gradient technique defined in the low-dimensional space R

d is used,
thus avoiding convergence and speed issues. The regressed curve γ is therefore
defined for all time points, originating at t0. The curve creates a group average
of spatiotemporal transformations based on individual correction trajectories.

2.3 Prediction of Spine Correction

Finally, to predict the evolution of spine correction from an unseen pre-operative
spine model, we use the geodesic curve γ : RD → M modelling the spatiotem-
poral changes of the spine, where each point x ∈ M is associated to a speed
vector v defined with a tangent plane on the manifold such that v ∈ TxM.

Based on Riemannian theory, an exponential mapping function at x with
velocity v can be defined from the geodesics such that eM

x (v). Using this con-
cept, parallel transport curves defined in Tx can help define a series of time-
index vectors along γ as proposed by [8]. The collection of parallel transport
curves allows to generate an average trajectory in ambient space R

D, describing
the spine changes due to the corrective forces of tethering. The general goal is
to begin the process at the pre-operative sample, and navigate the piecewise-
geodesic curve describing correction evolution in time, where one can extract
the appearance at any point (time) in R

D using the exponential mapping. For
implementation purposes, the parallel transport curve are constrained within a
smooth tubular boundary perpendicular to the curve (from an ICA) to gener-
ate the spatiotemporal evolution in the coordinate system of the pre-operative
model.

Hence, given the manifold at time t0 with v defined in the tangent plane and
the regressed piecewise-geodesic curve γ, the parallel curve is obtained as:

ηv(γ, s) = eM
γ(s)(xγ,t0,s(v)), s ∈ R

d. (3)

Therefore by repeating this mapping for manifold points seen as samples of indi-
vidual progression trajectories along γ(s), an evolution model can be generated.
Whenever a new sample is embedded, new samples points along γ(s), denoted
as ηv(γ, ·) can be generated parallel to the regressed piecewise curve in M,
capturing the spatiotemporal changes in correction.

A time warp function allowing s to vary along the geodesic curve is described
as φi(t) = θi(t − t0 − τi) + t0. Here, we propose to incorporate a personalized
acceleration factor based on the spine maturity and flexibility derived from the
spine bending radiographs and Risser grade. A coefficient θi = Ci×Ri describing
the change in Cobb angle Ci between poses, and modulated by the Risser grade
Ri. This coefficient regulates the rate of correction based on the K neighbour-
ing samples. Finally, to take under account the relative differences between the



Spatiotemporal Manifold Prediction Model for AVBGM Surgery 211

group-wise samples and the query model once mapped onto the regressed curve,
a time-shift parameter τi is incorporated in the warp function.

For spine correction evolution, displacement vectors vi are obtained by a
PCA of the hyperplane crossing TxiM in manifold M [8]. Hence, for any query
sample xq which represents the mapped pre-operative 3D reconstruction (prior
to surgery), the predicted model at time tk can be regressed from the piecewise-
geodesic curve generated from embedded samples x in N (xq) such that:

yq,tk
= ηvq (γ, φi(tk)) + εq,tk (4)

which yields a predicted post-operative model yq,tk
in high-dimensional space

R
D, and εq,tk a zero-mean Gaussian distribution. The generated model offers a

complete constellation of inter-connected vertebral models composing the spine
shape S, at first-erect (FE), 1 or 2-year visits, including landmarks on vertebral
endplates and pedicle extremities, which can be used to capture the local shape
morphology with the correction process.

3 Experiments

The discriminant manifold was trained from a database of 438 3D spine recon-
structions generated from biplanar images [12], originating from 131 patients
demonstrating several types of deformities with immediate follow-up (FE), 1
year and 2 year visits. Patients were recruited from a single center prospective
study, with the inclusion criteria being evaluated by an orthopaedic surgeon
and a main curvature angle between 30◦ and 60◦. Patients were divided in two
groups, with the first group composed of 94 responsive patients showing a reduc-
tion in Cobb angle over or equal to 10◦ between the FE and follow-up visit. The
second group was composed of 37 non-responsive (NP) patients with a reduction
of less than 10◦. Each vertebra model of the spine were annotated with 4 pedicle
tips and 2 center points placed on the vertebral endplates, and validated by an
experienced radiologist. These expert-selected landmarks were used to establish
the local coordinate system for each vertebra, describing the orientation and
location (known pose), and used as control points to warp triangulated shape
models generated from CT images of a cadaveric spine.

We evaluated the geometrical accuracy of the predictive manifold for 56
unseen surgical patients with AVBGM (mean age 12 ± 3, average main Cobb
angle on the frontal plane at the first visit was 47◦ ± 10◦), with predictions at
t = 0 (FE), t = 12 and t = 24 months. For the predicted models, we evalu-
ated the 3D root-mean-square difference of the vertebral landmarks generated,
the Dice coefficients of the vertebral shapes and in the main Cobb angle. The
results are shown in Table 1. Results were confronted to other techniques such as
biomechanical simulations performed on each subject using finite element mod-
elling with ex-vivo parameters [4], a locally linear latent variable model [13] and
a deep auto-encoder network [14]. Figure 2 shows a sample prediction result for
an 11 y.o. patients at FE, 12 and 24-months for a patient with right-thoracic
deformity, which are more common in the scoliotic population. Results from
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Table 1. 3D RMS errors (mm), Dice (%) and Cobb angles (◦) for the proposed method,
and compared with biomechanical simulations, locally linear latent variable models
(LL-LVM) and deep auto-encoders (AE). Predictions are evaluated at FE, 1 and 2-yrs.

FE visit 1-year visit 2-year visit

3D RMS Dice Cobb 3D RMS Dice Cobb 3D RMS Dice Cobb

Biomec. sim 3.3± 1.1 85± 3.4 2.8± 0.8 3.6± 1.2 84± 3.6 3.2± 0.9 4.1± 2.3 82± 3.9 3.6± 1.0

LL-LVM [13] 3.6± 1.4 83± 4.0 3.8± 1.5 4.7± 3.3 79± 4.4 5.5± 2.6 6.6± 4.4 71± 5.9 7.0± 3.9

Deep AE [14] 4.1± 1.5 80± 4.4 5.1± 2.7 5.0± 1.9 77± 4.9 5.8± 3.0 6.3± 4.6 72± 5.7 6.6± 4.2

Proposed 2.4± 0.8 92± 2.7 1.8± 0.5 2.9± 0.9 90± 2.8 2.0± 0.7 3.2± 1.3 87± 3.1 2.1± 0.6

Fig. 2. (a) Comparison in actual and predicted Cobb angles in a 11 y.o. patient at the
first-erect visit, at 1-yr and at 2-yrs postop. Top row depicts the actual X-rays, while
the bottom row presents the predicted 3D spine geometry. (b) Errors with 5 different
tethering levels, comparing results with biomechanical simulations at 2 yrs.

the predicted geometrical models show the regressed spatio-temporal geodesic
curve yields anatomically coherent structures, with accurate local vertebral
morphology.

To evaluate robustness with respect to varying instrumented levels, we mea-
sured the accuracy of the predicted models for tethering between 4 and 8 ver-
tebrae at 2 yrs, ranging from thoracic to lumbar regions. Figure 2(b) shows the
improvement of the spatiotemporal geodesic curve in comparison to traditional
biomechanical models, particularly when the number of levels are higher.

4 Conclusion

In this paper, we proposed an accurate predictive model of spine morphology
and Cobb angle correction obtained at the first-erect, 1-year and 2-year visits,
following anterior vertebral body growth modulation. The piecewise-geodesic
curve capturing spatio-temporal changes could be used for patient selection of
AVBGM as a decision-sharing tool prior to surgery. Our approach is based on
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smooth and regular trajectories embedded in a discriminant manifold, which
enable an efficient navigation on a low-dimensional domain trained from opera-
tive cases, yielding results similar to actual surgical outcomes. Future work will
include a multi-center evaluation before it can be used in clinical practice.
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