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Abstract. Breast cancer is the most common cancer in women, and ultrasound
imaging is one of the most widely used approach for diagnosis. In this paper, we
proposed to adopt Convolutional Neural Network (CNN) to classify ultrasound
images and predict tumor malignancy. CNN is a successful algorithm for image
recognition tasks and has achieved human-level performance in real applica-
tions. To improve the performance of CNN in breast cancer diagnosis, we
integrated domain knowledge and conducted multi-task learning in the training
process. After training, a radiologist visually inspected the class activation map
of the last convolutional layer of trained network to evaluate the result. Our
result showed that CNN classifier can not only give reasonable performance in
predicting breast cancer, but also propose potential lesion regions which can be
integrated into the breast ultrasound system in the future.
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1 Introduction

Breast cancer is the most common cancer in women. According to statistics in 2013,
breast cancer caused approximately 8.2–14.94 million death worldwide [2]. The cor-
responding morbidity rate is 15.1%, while the death rate is about 6.9%. Detection and
diagnosis in the early stage are essential for its treatment, which could improve survival
rate. One of the most efficient diagnostic methods is mammographic screening. How-
ever, mammographic sensitivity can be relatively low in dense breasts (less than 50%)
[2], which may lead to unnecessary breast biopsies (65–85%) [3]. Whereas, with the
interpretation of skilled radiologists, ultrasonography presents a higher accuracy in
distinguishing benign breast lumps from malignant tumors. A US population study has
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demonstrated that by using brightness mode ultrasound, the overall sensitivity could
reach 97.2% (281 of 289). The specificity can achieve 61.1% (397 of 650) and the
accuracy could be 72.2% (678 of 939) [4]. In addition, ultrasound is radiation free, easily
accessible, economical and convenient in practice. Therefore, ultrasonography has
gradually become an alternative to mammography in clinical diagnosis of breast cancer.

The Breast Imaging Reporting and Data System (BI-RADS) [5] offered standard-
ized terminology to depict features, and to provide assessments as well as recom-
mendations. Features including shape, orientation, margin, echo pattern, and posterior
features of masses are compiled in the BI-RADS lexicon for ultrasound. Based on the
particular features of the lesion, radiologists would recommend one BI-RADS category
(Table 1). Radiologists would finally issue a clinical recommendation according to
these categories, which suggested an annual examination for categories 1 and 2, an
extra test six months later for category 3, and a biopsy for categories 4, 5 and 6 [6]. But
the image-based diagnosis was dependent on practitioners’ experience and thus rela-
tively subjective. A computer aided diagnosis system is of great demands to resolve
this issue.

Thanks to the emerging deep learning technique such as convolutional neural
network (CNN) [7], computer aided automatic detection system can now achieve
comparable or even better performance than radiologists in detecting lesion or diag-
nosing medical conditions from image data. For instance, with CNN, computers
achieved 90% sensitivity and 85% specificity in predicting brain hemorrhage, mass
effect, or hydrocephalus from CT images [8], successfully predicted diabetic
retinopathy patients among 11711 retinal fundus photographs with 96% sensitivity and
93% specificity [9], or even can diagnose skin cancer with only photos taken by
smartphone [10]. In previous works, based on CNN, breast cancer diagnosis systems
have also been proposed to classify breast cancer in mammogram images [11] or
segment breast tumor regions in histopathological images [12]. Thus, this paper seeks
feasibility of utilizing CNN to predict breast cancer in ultrasound images into one of the
three malignancy categories: malignant tumor, benign lump, or normal tissue. We
adopted BIRADS categories as a “domain knowledge” to improve the classification of
ultrasound images. Specifically, two different classifiers have been proposed. One
directly classifies the malignancy and the other one simultaneously predicts BI-RADS

Table 1. Table of BI-RADS categories and the number of images acquired for each category

BI-RADS Description # of images # of patients

1 Negative finding 1016 243
2 Benign 54 47
3 Probably benign 55 27
4a Low suspicion 352 139
4c Moderate suspicion 61 31
5 Highly suggestive of malignancy 205 99
6 Known Biopsy-Proven malignancy 190 35
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category. By this means, BIRADS categories, which can be interpreted as doctors’
visual interpretation of image features, can guide the training of image features
obtained by CNN to improve the performance of malignancy claasification. The per-
formance of each classifier and the cause of failures were then examined in details. We
will show that CNN classifier can not only give reasonable performance in predicting
breast cancer but also propose potential lesion regions.

2 Method

2.1 Data Acquisition

We retrospectively collected 1933 breast ultrasound images from 608 patients. Eligi-
bility criteria excluded patients who received breast implants or surgeries on the
ipsilateral breast, and those who were pregnant or breastfeeding. All images were
reviewed by experienced radiologists and BI-RADS assessments [5] were recorded
(Table 1). Based on BI-RADS categories, images were then classified as malignant
tumor (BI-RADS categories 5, 6, and part of 4), benign lump (BI-RADS categories 2, 3
and part of 4), and normal tissue (BI-RADS category 1). Since radiologists cannot
directly verify the malignancy of lumps classified as BI-RADS category 4 with
ultrasound images, a pathological test was conducted by ultrasound-guided core needle
biopsy (CNB) or a surgery following the clinical procedures to confirm the malignancy.
In total, 96 BI-RADS category 4 images were classified as malignant. To summary,
among the images acquired, 491 show malignant tumor, 426 show benign lump, and
1016 are normal tissues.

2.2 Image Preprocessing

After collecting data, we pre-processed the data following the steps below:

Cropping Images. The ultrasound images collected had uninformative parts, such as
screen background, acquisition parameters and hospital name. Since these are not
helpful and may even introduce bias, we manually cropped all the images to remove
them. In addition, since the shape of ultrasound images may vary across devices and
imaging settings – some are in horizontal rectangle while others are in vertical rectangle
shape, we cropped the images into square shape for the training convenience. This may
remove useful information in the image. To avoid that, we ensured to keep the com-
plete lump which is critical for the prediction, and the skin tissues whose contrast is
more accurate than deep tissues and more uniform across devices.

Removing Makers: In some ultrasound images radiologists left markers to indicate or
quantify tumor position (e.g. cross symbol, rectangle box, dash line). These markers,
colorized or black-and-white, may introduce bias to the training of classifier. For
instance, classifier may likely take cross symbols as a tumor indicator since no such
symbols appear on normal tissues. Hence, we adopted a semi-automatic approach to
clean those symbols. Considering that the ultrasound images we collected are in gray
color, we first detected all the colored or pure black-or-white pixels in the image as a

870 J. Liu et al.



mask of potential markers. The mask was reviewed and cleaned manually with in-
house image annotation tools. Then, the masked pixels were restored by linear inter-
polation with the surrounding pixels. All images were reviewed after processing to
ensure that no obvious artifacts were left and the failed ones were excluded.

2.3 Training Multi-task CNN

We adopted the convolutional layers in VGG16 [7] to extract image features for the
classifier. VGG16 contains 13 convolutional layers and 5 max pooling layers. It is a
well-established CNN classifier for image recognition tasks and has been utilized in
many applications. Though there are other deeper and more advanced CNN classifiers,
we decided to choose VGG16 to avoid potential overfitting issues considering the
limited training data in our experiments. Following this philosophy, a dense layer that
is small than the original VGG16 network was cascaded after flattened convolutional
layers (Fig. 1).

When training the classifier, we applied the weights pre-trained based on ImageNet
database as the initial weights. Notably, since our ultrasound images are monochrome
but pre-trained VGG16 network takes colorful images with 3 channels as input, we
need to first convert the monochrome image to colorful images. One typical approach
that is widely used by others is to use the same image in all 3 channels. However, in our
view, the redundant information introduced in those approaches does not fully embrace
the power of CNN. Instead, we inserted a convolutional layer with three 3 � 3 kernels
between the input layer and VGG16 convolution layers. This layer will be trained to
convert input monochrome images into the three channel images that best fits the pre-
trained VGG16 network.

In our baseline method, the network proposed above only classified the image into 3
classes: malignant tumor, benign lump, and normal tissue. We wondered if the per-
formance of this task can be further improved by introducing clinical domain knowledge
into the training process. Thus, when training the network, another logistic regression
classifier was appended after the convolution layers to classify the image into the BI-
RADS categories (Fig. 1). Though this might add an extra burden to the network and
BI-RADS categories are highly coupled with tumor prediction, our rationale of this
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Fig. 1. Illustration of the multi-task CNN applied. The numbers of hidden units/convolutional
kernels applied in each layer were shown in the figure.
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design is as follows: (1) BI-RADS assessment is based on professionals’ visual
inspection of the image features. It might help guide the training of the tumor related
features. (2) BI-RADS categories are finer than the 3 maliginacy classes we want to
predict and thus may offer better guidance. (3) Additional burden in the training process
may help to reduce the chance of overfitting.

3 Results

In our experiments, data was evenly split into five folds. Since multiple ultrasound
images may be acquired for each patient, we ensured that the images from the same
patient will be assigned to the same fold. Also, we tried to keep the distribution of each
class as the same as possible in each fold. To fully utilized the data to examine our
proposed method, the training process follows cross-validation training scheme – each
time take four folds as training set and test on the rest fold. Five independent trainings
and testings were conducted on both the baseline network and the multi-task network.

3.1 Classification Result

We combined the testing results of five independent experiments and conducted
quantitative analyses accordingly. Table 2 shows the number of images in each cate-
gory. Though the result is not perfect, both classifiers worked reasonably well in
classifying images. With the baseline method, the prediction accuracy is 82.9%. By
using the multi-task network, the prediction accuracy slightly increased to 83.3%.
Notably, both methods have high sensitivity in differentiating abnormal cases from
normal ones (baseline: 95%, multi-task: 96.7%). The major error comes from sepa-
rating malignant tumors and benign lumps. For the proposed multi-task approach, only
74.3% malignant (baseline: 71.9%) tumors were correctly classified. This is reasonable
since the malignancy level of BI-RADS category 4 tumor is also difficult for experts to
tell based on an ultrasound image only. About half of the errors between malignant
tumor and benign lump prediction happened in BI-RADS category 4 images (baseline:
57.5%, multi-task: 54.9%). Overall, despite the reduced sensitivity in predicting normal
tissues (baseline: 93.7%, multi-task: 91.2%), better performance has been achieved by
the proposed multi-task approach.

Table 2. Number of images in each category. Table on the top shows the result from the
baseline method. Table on the bottom shows the result of the multi-task network.

Baseline Predict malignant Predict benign Predict normal

Truth malignant 353 101 37
Truth benign 120 298 8
Truth normal 20 44 952
Multi-task Predict malignant Predict benign Predict normal

Truth malignant 365 101 25
Truth benign 103 318 5
Truth normal 30 59 927
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3.2 Examples of Correct and Wrong Predictions

To further examine the performance of each classifier and understand why this clas-
sification task is challenging, we selected some example images. In order to understand
what happened inside the CNN classifier, class activation map (CAM) of the last
convolutional layer was visualized [13]. CAM is a heat map highlights the attention of
a classifier when making the decision and thus can reveal the regions associated with
the prediction. Specifically, two groups of examples were selected and shown. (1) The
tumors/lumps correctly predicted by the multi-task method only and the normal tissues
correctly predicted by the baseline method only were shown (Fig. 2). (2) A consid-
erable number of images were wrongly classified by both methods, examples of those
images were shown (Fig. 3). The images and the corresponding CAM were examined
by experienced radiologists.

As shown in Fig. 2a–d, when the classification is correct, CAM accurately high-
lighted the malignant masses (Fig. 2a–b) and benign lumps (Fig. 2c–d). When the
baseline method wrongly classified malignant tumors as benign, the network pays
attention to both CAM area as well as the adjacent normal tissues. As for the normal
cases which were correctly predicted by the baseline only, the attention is on the
normal shallow skin tissues while the multi-task method wrongly regarded the decay
resulted from deep location or dense superficial tissues and some cellulite that extended
into the glandular layer as masses (Fig. 2e–f).
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As for the cases failed by both methods, some of them belongs to BI-RADS
category 4, which is also difficult for radiologists to decide and requires pathological
verifications (Fig. 3b–c). Nevertheless, for these cases, CAM still accurately high-
lighted lumps in the image. Figure 3d was predicted as normal tissues due to the tiny
volume of the mass. Some radiologists may consider it as normal ducts while others
may think of cysts. The interpretation on this kind of images is relatively subjective,
and the lesion has little impact on patients. In Fig. 3e, a malignant label was given to
normal tissues, as the area was a centralized point of mammary ducts and thus was
difficult to be distinguished from lesions even by senior doctors, if the location is
unclear. Another misdiagnosis example was Fig. 3f, in which normal tissues were
deemed as benign lumps. The interpretation identified the cellulite as a hypoechoic
mass. It was difficult to tell the exact nature of this mass, since ultrasound radiologists
also depended on whether the mass continued with normal tissues to determine its
character. Due to the complex structures of breasts, such as the cellulite penetrating into
the glands, the collection of vasa efferentia under the nipples, the common features of
benign and malignant lumps, together with the different features of each section, it is
difficult to determine the relationship between lumps and its surrounding tissues, as
well as its overall situation. More complete patient-based videos might be required to
obtain better results.

Notably, in our preliminary results, we found some intriguing malignant cases that
were classified as normal (e.g. Fig. 3a). After reviewing the cases, we found that some
of them came from the patients which were diagnosed as cancer. But the tumor was not
captured in the image and the tissues shown in the image are normal findings. Those
cases were eliminated with a second review. This also suggests that CNN is a powerful
tool to learn the generalized pattern even when there are noises in the training data.
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4 Conclusion

In this paper, we adopted CNN to predict breast tumors in ultrasound images. Domain
knowledge was integrated into the training process. Promising results were obtained in
separating images with lump and normal findings. Moreover, though this is not a
segmentation task, the activation map of the trained classifier can still correctly high-
light the mass regions in images. In addition, reasonable results were also obtained in
differentiating malignant tumors and benign lumps. In the future, more data will be
collected to fine-tune the network. And the system will be extended to process video
data for better classification and prediction of the tumor malignancy. The correlation
between BI-RADS categories and the classification results will be then investigated
such that the whole system can be integrated into current breast cancer diagnosis
procedure.
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