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Abstract. Lung parenchyma destruction (emphysema) is a major factor
in the description of Chronic Obstructive Pulmonary Disease (COPD)
and its prognosis. It is defined as an abnormal enlargement of air spaces
distal to the terminal bronchioles and the destruction of alveolar walls. In
CT imaging, the presence of emphysema is observed by a local decrease
of the lung density and the diagnose is usually set as more than 5% of the
lung below −950 HU, the so-called emphysema density mask. There is
still debate, however, about the definition of this percentage and many
researchers set it depending on the population under study. Addition-
ally, the −950 HU threshold may vary depending on factors as the slice
thickness or the respiratory phase of the acquisition. In this paper we
propose (1) a statistical framework that provides an automatic defini-
tion of the density threshold based on the statistical characterization of
air and lung parenchyma; (2) the definition of a statistical test for emphy-
sema detection that accounts for the CT noise characteristics. Results
show that this novel statistical framework improves the quantification of
emphysema against a visual reference and improves the association of
emphysema with the pulmonary function tests.
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1 Introduction

Emphysema is one of the most common disease manifestations that causes airflow
limitation due to the destruction of alveolar walls and loss of elastic recoil. It
is a common component of Chronic Obstructive Pulmonary Disease (COPD),
a lung condition defined by expiratory airflow limitation associated with an
inflammatory response to noxious particles such as cigarette smoke. COPD is
currently the 3rd leading cause of death in the U.S. and represents an enormous
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societal burden. Recent evidences suggest a rapid decline in lung function occurs
and may be prevented if acted upon [1]. Early diagnosis is, therefore, essential.

Although pulmonary function tests remain the standard diagnostic tool for
COPD, image-based diagnosis of CT scans are increasingly used in diagnosing
and categorizing COPD. The detection of emphysema is generally performed by
visual inspection of CT images for Low-Attenuation Areas (LAA) [2]. Quantita-
tively, CT is a well-validated technique to assess the in vivo presence and extent
of emphysema [3]. The identification of emphysema areas is usually prescribed
to areas under a density level set to −950 Hounsfield Units (HU), the so-called
density mask. This threshold has been selected by the community as the one with
the highest correlation with microscopic emphysema analyzed though biopsies
[4]. This threshold, however, may vary with the slice thickness (the original study
was confined to scans with 1 cm), exposure dose and respiratory phase during
the acquisition.

This work proposes to reduce the confounding factors that affect the emphy-
sema detection by defining a statistical framework that provides a characteri-
zation of both lung parenchyma and air. The characterization will lead to the
definition of an adaptive threshold that fits the particular conditions of the scan.
The adaptive threshold will be defined as the one that reduces both type I and
type II errors in a statistical hypothesis testing problem where the air probabil-
ity distribution is acquired in the trachea, and the parenchyma distribution is
inferred from the lung. This way, we palliate effect of the noise caused by lower
effective radiation due to body mass, reconstruction deviations or respiratory
phase. The statistical framework will also lead to define a statistical test for
emphysema detection. Results show a significant improvement in the correlation
with functional respiratory parameters used for the diagnosis of COPD.

2 Characterization of Emphysema in CT Scans

The definition of a statistical framework for the characterization of emphysema
will require the determination of the probability distribution of air and lung
parenchyma. In the case of air, the estimation of the probability distribution
becomes easy since apparent anatomical structures like the trachea provide a
suitable set of samples for the estimation. On the other hand, the parenchyma
characterization is far more intricate because the lung tissue is a heterogeneous
composition of tissues (connective tissue, capillaries, blood, and air). The intrin-
sic relationship between air and lung parenchyma is a critical factor that takes
place in the variation of lung densities throughout the respiratory cycle due to
the volume change.

We will disentangle the parenchyma composition of air by adopting a mixture
model in the statistical description of emphysema proposed in [5]. This model is
defined as a finite non-central Gamma Mixture Model (nc-ΓMM) whose proba-
bility density function (PDF) is:

p(x) =

J∑

j=1

πjfX(x|αj , βj , δ) (1)
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for J components, where πj are the weights of the mixture and αj , βj and δ are
the shape, scale and location parameters of a non-central Gamma distribution
with probability density function defined as:

fX(x|α, β, δ) =
(x − δ)α−1

βαΓ (α)
e

− x−δ
β , x ≥ δ and α, β > 0 (2)

The characterization of the air component of the mixture can be accurately
calculated considering anatomical structures such as the trachea. The δ param-
eter estimated for air can be extended for the rest of components since the CT
numbers are all relative to the lowest density level (air). Once the parameters of
the air component are estimated, one can calculate the rest of components for
the lung constraining the air to the parameters already derived. This will lead
to a more accurate estimate of the air component that is not affected by the
number of tissues of different densities.

Many methodologies can be applied for the estimation of the mixture model.
Among them, probably the simplest is achieved with the Expectation Maxi-
mization method, which reduces the problem to solve a non-linear equation in
each iteration, as proposed in [5]. In our work, we propose a modification of this
Expectation Maximization methodology which comprises the following steps:

Estimation of the Air Component. Let x = {xi}N
i=1 be the set of sam-

ples acquired in the trachea (following a nc-Γ distribution). The parameters of
the air component (αair, βair, δ) are calculated as the maximum log-likelihood
estimates:

{αair, δ} = argmax
α,δ≤minx

L(α, δ|x) (3)

where

L(α, δ|x) = (α−1)
N∑

i=1

log(xi−δ)−Nα−Nα log

(
1

αN

N∑

i

(xi − δ)

)
−N log(Γ (α)) (4)

and

βair =
1

αairN

N∑

i=1

(xi − δ) (5)

Characterization of Lung Parenchyma. Once the parameters of the air
component are known, the mixture model can be estimated constrained to the
air parameters. To ensure that the heterogeneous composition of the lung is
properly described in the mixture model, we set components from −950 to −750
HU in steps of 50 HU, and from −700 to −400 HU in steps of 100 HU. This
is more than a reasonable range of attenuations considering that the normal
lung attenuation is between −600 and −700 HU. So, the mixture model will be
constrained to the mean values μj ∈ {μair,−950, . . . ,−400}.

The estimation of the shape parameters for each component, αj (except the
air component), are obtained by solving the following non-linear equation [5]:

log(αj) − ψ(αj) =
∑N

i=1 γi,j(xi − δ)/μj∑N
i=1 γi,j

−
∑N

i=1 γi,j log((xi − δ)/μj)∑N
i=1 γi,j

− 1 (6)
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Fig. 1. Coronal view of a chest CT scan and histogram. Trachea and lung segmentations
are shown in red and lung blue, respectively. Note that the density mask (−950 HU)
underestimates the emphysema (more than 50% of trachea is classified as parenchyma).

where ψ(·) is the digamma function, ψ(·) = Γ ′(x)/Γ (x), and γi,j = P (j|xi) are
the posterior probabilities for the j-th tissue class:

γi,j =
πjfX(xi|αj , βj , δ)∑J

j=1 πjfX(xi|αj , βj , δ)
(7)

Finally, the scale factor is trivially calculated as βj = μj/αj and the priors πj

are updated as πj = 1
N

∑N
i=1 γi,j .

The fitting is performed iteratively until convergence in the parameters is
reached. This is usually achieved in very few iterations since the shape parameter
αj is already constrained to the mean μj , which ensures the robustness of the
convergence. A suitable initialization of parameters for the iterative optimization
is πj = 1/J , αj = 2 and βj = μj/αj for each component, J = 2, . . . , J with the
exception of the air component, j = 1, which is set to α1 = αair and β1 = βair.

Figure 1a shows a real CT scan where the lung and trachea masks are super-
imposed in blue and red respectively. In Fig. 1b, the histograms obtained from
the trachea and lung parenchyma are depicted along with the nc-Γ distribu-
tion fitted with Eqs. (3–5) plotted in solid red line, and the ΓMM fitted to the
parenchyma data in solid blue line.

Air Component Removal. We can now disentangle the air component from
the parenchyma description by imposing πair = π1 = 0 and updating the priors
as π∗

j = πj/
∑J

k=2 πk for j = 2, . . . , J . The resulting mixture model now describes
the composition of tissue without air:

ptissue(x) =
J∑

j=2

π∗
j fX(x|αjβj , δ) (8)
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3 Adaptive Threshold for Emphysema Detection

To improve the performance of the density mask threshold recommendation
(−950 HU), we will consider the minimization of type I and type II errors of the
statistical hypothesis testing for air and normal tissue for each subject. With the
statistical framework established in the previous section, we can effectively char-
acterize the air and parenchyma in each patient and a more accurate threshold
can be established for emphysema detection. Formally speaking, let us consider
the PDFs of air and tissue:

pair(x) = fX(x|αair, βair, δ); ptissue(x) =

J∑

j=2

π∗
j fX(x|αj , βj , δ), (9)

where fX(·|α, β, δ) is the nc-Γ PDF of Eq. (1). The optimal threshold is derived
as:

t = argmin
x

∣∣∣∣∣1 − FX(x, |αair, βair, δ) −
J∑

j=2

π∗
j FX(x|αj , βj , δ)

∣∣∣∣∣ , (10)

where FX(x, |α, β, δ) is the cumulative distribution function (CDF) of a nc-Γ
distribution:

FX(x|αj , βj , δ) =

∫ x

δ

(y − δ)α−1

βαΓ (α)
e

− y−δ
β dy =

1

Γ (α)
γ

(
α,

x − δ

β

)
, x ≥ δ and α, β > 0

(11)
The monotonic behavior of Eq. (11) ensures the existence of t in Eq. (10).

The statistical framework introduced in the previous section in combination
to the definition of the optimal threshold in Eq. (10) allows us to define a sta-
tistical test for the detection of emphysema on a certain region of interest. The
statistic will be defined as the degree of implication of emphysema, p̂, i.e. the
percentage of emphysema within the region under study. According to the sta-
tistical model here derived, samples will have a probability of being emphysema
pemph = FX(t, |αair, βair, δ). Then, p̂ is distributed as a Binomial, B(pemph, n),
of parameters pemph and the number of samples, n. Note that, as n → ∞,

p̂
L−→ N

(
pemph,

√
pemph(1−pemph)

n

)
. Therefore, we can set a statistical test with

null hypothesis H0: “The region under study is normal parenchyma” whose criti-

cal point from which the null hypothesis is rejected if p̂ > p0+zα

√
pemph(1−pemph)

n ,
with P (Z ≤ zα) = α and Z ∼ N (0, 1).

4 Results

The air and lung parenchyma were statistically characterized in 48 inspiratory
scans acquired from subjects with diagnosed COPD with all the different severity
levels according to the GOLD guidelines classification of patients1. 5 Different
1 The data was acquired at three centers as part of a COPD study and with the
approval of their ethics committee and the informed consent of each subject.
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Fig. 2. Boxplots for the implication of emphysema detected in segmentations. The
adaptive threshold detects more implication in severe and mild emphysema, while
maintaining the normal parenchyma significantly below 5%.

devices from 2 different manufacturers were used: GE VCT-64, Siemens Defi-
nition Flash, Siemens Definition, Siemens Sensation-64, and Siemens Definition
AS+. The dose was set to 200 mAs in all the acquisitions.

Lung segmentations and trachea segmentations were automatically obtained
with an automatic method as implemented in the Chest Imaging Platform (www.
chestimagingplatform.org). The distribution of air was defined by adjusting nc-
Γ statistical model as exposed in Eqs. (3–5) for the trachea samples, while the
distribution of lung parenchyma was obtained by fitting the ΓMM to the lung
parenchyma samples, Eqs. (6 and 7), and the tissue PDF is calculated by remov-
ing the air component, Eq. (8). The optimal threshold was computed as the
optimal CT number that minimizes both type I and type II errors, Eq. (10).

We performed two different validations of the proposed methodology. First,
we compareed the proposed method and the density mask within regions already
labeled by an expert as severe emphysema, meaning most of the region affected;
mild emphysema, where the tissue shows a mild low attenuation density; and
normal parenchyma, where no parenchymal damage was perceived. The expert
was free to select as many regions as necessary for each group on each subject.
We used the degree of implication of emphysema as the validation metric defined
as the percentage of voxels within the region that were considered emphysema
according to each method. Finally, we provided an indirect validation of our
method with a correlation analysis with respiratory function. We correlated the
emphysema score obtained in each subject with FEV1%, a standard functional
respiratory measure used for COPD diagnose. This measure is defined as the
ratio between the volume of air that can forcibly be blown out in one second
after full inspiration (the so-called Forced Expiratory Volume in 1 second, FEV1)
and the volume of air that can forcibly be blown out after full inspiration (the so-
called Forced Vital Capacity, FVC). Emphysema affects pulmonary function by
compromising the lung elastic recoil and restricting flow by small airway collapse
during expiration. Therefore, improved correlation with FEV1% can be seen as
a functional validation of any approach that aims at quantifying emphysema.

www.chestimagingplatform.org
www.chestimagingplatform.org
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Quantitative Validation in Classified Regions. The implication of emphy-
sema was studied in the segmentations provided by the expert for all the 48
subjects. In Fig. 2 we show the boxplots for the three classes. Note that the
implication of emphysema in regions labeled as severe and mild emphysema
remarkably increases. We test the differences with a paired Wilcoxon signed-rank
test at a significance level α = 0.05 resulting in statistically significant differences
for both severe and mild emphysema (p-values < 10−7 for both cases) between
the proposed adaptive threshold and density masking. Additionally, Fig. 2c evi-
dences that the increase in the sensitivity to emphysema detection still maintains
a low type I error below 5% involvement (p-values > 0.3), meaning that the null
hypothesis H0: “normal parenchyma” cannot be rejected.2

Fig. 3. Emphysema classification for the density mask (−950 HU) and for the Adaptive
Threshold of subject shown in Fig. 1. Density Mask underestimates the emphysema
composition (a): Most of the samples in the trachea are labeled as tissue. (b) The
Adaptive Threshold successfully labels the trachea samples. Besides, a prominent region
of low attenuation density is now detected as emphysema.

Table 1. Linear-log regression analysis for the FEV1% with respect the emphysema
for the density mask (−950 HU) and the adaptive threshold.

As an example of the performance of the proposed threshold, we show in
Fig. 3 the density mask threshold at −950 HU and the optimal adaptive threshold

2 5% involvement is the level of implication that the clinical community uses as con-
sensus to define presence of disease on CT scans.
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t = −870 HU calculated with Eq. (10) for the same subject shown in Fig. 1. The
density mask obtains a Type I error of 0.10% and a Type II error 58.91%. Note
that the −950 HU threshold is far below the extreme of the air and implies an
unnecessary increase of type II error. This threshold is clearly underestimating
the emphysema in this subject and, paradoxically, classifying more than 50%
of the trachea samples as tissue. On the other hand, the proposed threshold
provides an optimal balance between both types of error, achieving a type I and
type II errors equal to 4.69%. Note that the increase of type I error is still below
the 5% while the type II error is dramatically reduced to more reasonable values.

Physiological Validation. We performed a linear-log regression analysis of the
FEV1% with respect to the emphysema detected in inspiratory scans for both
the density mask and the adaptive threshold. Results are shown in Table 1 where
the superiority of the adaptive threshold explains 44% of the variance in con-
trast to the 25% explained with the −950 HU one. We used the William’s test for
dependent samples to test differences in correlations [6]. The statistic obtained
for our dataset was T = 2.024, for N = 48 and correlation between dependent
variables ρ = 0.756, implying that the adaptive threshold significantly improves
the correlation with respiratory function when compare to density masking
(p = 0.024).

5 Conclusion

In this work, we show the problems derived from the definition of emphysema
in CT scans by the density mask approach. As shown in Fig. 1, the threshold
set by the density mask usually underestimates the distribution of air as a con-
sequence of confounding factors such as slice thickness, device calibration, and
noise due to body mass. The underestimation originates an important bias in the
detection of emphysema that hinders the association with functional respiratory
measures and early disease detection. Our work defines a statistical framework
to circumvent this problem. We characterize both trachea and lung parenchyma,
and derive a statistical test based on the optimal threshold that adapts to each
acquisition and reduces type I and type II errors. Results show a consistent
reduction of type II error in severe and mild emphysema regions while confines
type I error to rates below 5% in normal parenchyma. Our adaptive threshold
also shows a statistically significant improvement in association with pulmonary
function. This result evidences the suitability of our methodology for clinical
applications.
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