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Abstract. Recently deep learning has been witnessing widespread
adoption in various medical image applications. However, training com-
plex deep neural nets requires large-scale datasets labeled with ground
truth, which are often unavailable in many medical image domains. For
instance, to train a deep neural net to detect pulmonary nodules in
lung computed tomography (CT) images, current practice is to man-
ually label nodule locations and sizes in many CT images to construct a
sufficiently large training dataset, which is costly and difficult to scale.
On the other hand, electronic medical records (EMR) contain plenty of
partial information on the content of each medical image. In this work,
we explore how to tap this vast, but currently unexplored data source
to improve pulmonary nodule detection. We propose DeepEM, a novel
deep 3D ConvNet framework augmented with expectation-maximization
(EM), to mine weakly supervised labels in EMRs for pulmonary nodule
detection. Experimental results show that DeepEM can lead to 1.5%
and 3.9% average improvement in free-response receiver operating char-
acteristic (FROC) scores on LUNA16 and Tianchi datasets, respectively,
demonstrating the utility of incomplete information in EMRs for improv-
ing deep learning algorithms (https://github.com/uci-cbcl/DeepEM-for-
Weakly-Supervised-Detection.git).
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1 Introduction

Lung cancer is the most common cause of cancer-related death in men. Low-
dose lung computed tomography (CT) screening provides an effective way for
early diagnosis and can sharply reduce the lung cancer mortality rate. Advanced
computer-aided diagnosis (CAD) systems are expected to have high sensitivities
while maintaining low false positive rates to be truly useful. Recent advance in
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deep learning provides new opportunities to design more effective CAD systems
to help facilitate doctors in their effort to catch lung cancer in their early stages.

The emergence of large-scale datasets such as the LUNA16 [12] has helped
to accelerate research in nodule detection. Typically, nodule detection consists
of two stages: nodule proposal generation and false positive reduction. Tradi-
tional approaches generally require hand-designed features such as morpholog-
ical features, voxel clustering and pixel thresholding [6,9]. More recently, deep
convolutional architectures were employed to generate the candidate bounding
boxes. Setio et al. proposed multi-view convolutional network for false positive
nodule reduction [11]. Several work employed 3D convolutional networks to han-
dle the challenge due to the 3D nature of CT scans. The 3D fully convolutional
network (FCN) was proposed to generate region candidates and deep convolu-
tional network with weighted sampling was used in the false positive reduction
stage [3,8,13,14]. CASED proposed curriculum adaptive sampling for 3D U-net
training in nodule detection [7,10]. Ding et al. used Faster R-CNN to gener-
ate candidate nodules, followed by 3D convolutional networks to remove false
positive nodules [2]. Due to the effective performance of Faster R-CNN [14],
Faster R-CNN with a U-net-like encoder-decoder scheme was proposed for nod-
ule detection [14].

Fig. 1. Illustration of DeepEM framework. Faster R-CNN is employed for nodule pro-
posal generation. Half-Gaussian model and logistic regression are employed for central
slice and lobe location respectively. In the E-step, we utilize all the observations, CT
slices, and weak label to infer the latent variable, nodule proposals, by maximum a
posteriori (MAP) or sampling. In the M-step, we employ the estimated proposals to
update parameters in the Faster R-CNN and logistic regression.

A prerequisite to utilization of deep learning models is the existence of an
abundance of labeled data. However, labels are especially difficult to obtain in
the medical image analysis domain. There are multiple contributing factors: (a)
labeling medical data typically requires specially trained doctors; (b) marking
lesion boundaries can be hard even for experts because of low signal-to-noise
ratio in many medical images; and (c) for CT and magnetic resonance imaging
(MRI) images, the annotators need to label the entire 3D volumetric data, which
can be costly and time-consuming. Due to these limitations, CT medical image
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datasets are usually small, which can lead to over-fitting on the training set and,
by extension, poor generalization performance on test sets [16].

By contrast, medical institutions have large amount of weakly labeled med-
ical images. In these databases, each medical image is typically associated with
an electronic medical report (EMR). Although these reports may not contain
explicit information on detection bounding box or segmentation ground truth,
it often includes the results of diagnosis, rough locations and summary descrip-
tions of lesions if they exist. We hypothesize that these extra sources of weakly
labeled data may be used to enhance the performance of existing detector and
improve its generalization capability.

There are previous attempts to utilize weakly supervised labels to help train
machine learning models. Deep multi-instance learning was proposed for lesion
localization and whole mammogram classification [15]. Different pooling strate-
gies were proposed for weakly supervised localization and segmentation respec-
tively [1,4]. Self-transfer learning co-optimized both classification and localiza-
tion networks for weakly supervised lesion localization [5]. Different from these
works, we consider nodule proposal as latent variable and propose DeepEM, a
new deep 3D convolutional nets with Expectation-Maximization optimization,
to mine the big data source of weakly supervised label in EMR as illustrated
in Fig. 1. Specifically, we infer the posterior probabilities of the proposed nod-
ules being true nodules, and utilize the posterior probabilities to train nodule
detection models.

2 DeepEM for Weakly Supervised Detection

Notation. We denote by I ∈ R
h×w×s the CT image, where h, w, and s are image

height, width, and number of slices respectively. The nodule bounding boxes for
I are denoted as H = {H1,H2, . . . ,HM}, where Hm = {xm, ym, zm, dm}, the
(xm, ym, zm) represents the center of nodule proposal, dm is the diameter of the
nodule proposal, and M is the number of nodules in the image I. In the weakly
supervised scenario, the nodule proposal H is a latent variable, and each image I
is associated with weak label X = {X1,X2, . . . ,XM}, where Xm = {locm, zm},
locm ∈ {1, 2, 3, 4, 5, 6} is the location (right upper lobe, right middle lobe, right
lower lobe, left upper lobe, lingula, left lower lobe) of nodule Hm in the lung,
and zm is the central slice of the nodule.

For fully supervised detection, the objective function is to maximize the log-
likelihood function for observed nodule ground truth H given image I as

L(θ) = log P (H ∪ H̄|I;θ) =
1
M

M∑

m=1

log P (Hm|I;θ) +
1
N

N∑

n=1

log P (H̄n|I;θ),

(1)
where H̄ = {H̄1, H̄2, . . . , H̄N} are hard negative nodule proposals [14], θ is the
weights of deep 3D ConvNet. We employ Faster R-CNN with 3D Res18 for the
fully supervised detection because of its superior performance.
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For weakly supervised detection, nodule proposal H can be considered
as a latent variable. Using this framework, image I and weak label X =
{(loc1, z1), (loc2, z2), . . . , (locM , zM )} can be considered as observations. The
joint distribution is

P (I,H,X;θ) = P (I)
M∏

m=1

(
P (Hm|I;θ)P (Xm|Hm;θ)

)

= P (I)
M∏

m=1

(
P (Hm|I;θ)P (locm|Hm;θ)P (zm|Hm;θ)

)
.

(2)

To model P (zm|Hm;θ), we propose using a half-Gaussian distribution based
on nodule size distribution because zm is correct if it is within the nodule area
(center slice of Hm as zHm

, and nodule size σ can be empirically estimated
based on existing data) for nodule detection in Fig. 2(a). For lung lobe prediction
P (locm|Hm;θ), a logistic regression model is used based on relative value of
nodule center (xHm

, yHm
, zHm

) after lung segmentation. That is

P (zm, locm|Hm;θ) =
2√

2πσ2
exp

( − |zm − zHm
|2

2σ2

) exp(f(Hm)θlocm)
∑6

locm=1 exp(f(Hm)θlocm)
,

(3)
where θlocm is the associated weights with lobe location locm for logistic regres-
sion, feature f(Hm) = (xH m

xI
,
yH m

yI
,
zH m

zI
), and (xI , yI , zI ) is the total size of

image I after lung segmentation. In the experiments, we found logistic regres-
sion converges quickly and is stable.

The expectation-maximization (EM) is a commonly used approach to opti-
mize the maximum log-likelihood function when there are latent variables in the
model. We employ the EM algorithm to optimize deep weakly supervised detec-
tion model in Eq. 2. The expected complete-data log-likelihood function given
previous estimated parameter θ′ in deep 3D Faster R-CNN is

Q(θ;θ′) =
1
M

M∑

m=1

EP (Hm|I ,zm,locm;θ ′)
[
log P (Hm|I;θ)

+ log P (zm, locm|Hm;θ)
]
+ EQ(H̄n|z)

[
log P (H̄n|I;θ)

]
,

(4)

where z = {z1, z2, . . . , zm}. In the implementation, we only keep hard negative
proposals far away from weak annotation z to simplify Q(H̄n|z). The posterior
distribution of latent variable Hm can be calculated by

P (Hm|I, zm, locm;θ′) ∝ P (Hm|I;θ′)P (zm, locm|Hm;θ′). (5)

Because Faster R-CNN yields a large number of proposals, we first use hard
threshold (-3 before sigmoid function) to remove proposals of small confident
probability, then employ non-maximum suppression (NMS) with intersection
over union (IoU) as 0.1. We then employ two schemes to approximately infer the
latent variable Hm: maximum a posteriori (MAP) or sampling.
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Algorithm 1. DeepEM for Weakly Supervised Detection
Input: Fully supervised dataset DF = {(I , H)i}NF

i=1, weakly supervised dataset DW =
{(I , X)i}NW

i=1 , 3D Faster R-CNN and logistic regression parameters θ.
1: Initialization: Update weights θ by maximizing Eq. 1 using data from DF .
2: for epoch = 1 to #TotalEpochs:

� � � Weakly supervised training
3: Use Faster R-CNN model θ′ to obtain proposal probability P (Hm|I ; θ′) for

weakly supervised data sampled from DW .
4: Remove proposals with small probabilities and NMS.
5: for m = 1 to M : � � � Each weak label
6: Calculate P (zm, locm|Hm; θ) for each proposal by Eq. 3.
7: Estimate posterior distribution P (Hm|I , zm, locm; θ′) by Eq. 5 with nor-

malization.
8: Employ MAP by Eq. 6 or Sampling to obtain the inference of Hm.
9: Obtain the expect log-likelihood function by Eq. 4 using the estimated proposal

(MAP) or by Eq. 7 (Sampling).
10: Update parameter by equation 8.

� � � Fully supervised training
11: Update weights θ by maximizing Eq. 1 using fully supervised data DF .

DeepEM with MAP. We only use the proposal of maximal posterior proba-
bility to calculate the expectation.

Ĥm = arg maxHm
P (Hm|I;θ′)P (zm, locm|Hm;θ′) (6)

DeepEM with Sampling. We approximate the distribution by sampling M̂
proposals Ĥm according to normalized Eq. 5. The expected log-likelihood func-
tion in Eq. 4 becomes

Q(θ;θ′) =
1

MM̂

M∑

m=1

M̂∑

Ĥm

(
log P (Ĥm|I;θ) + log P (zm, locm|Ĥm;θ)

)

+ EQ(H̄n|z)
[
log P (H̄n|I;θ)

]
.

(7)

After obtaining the expectation of complete-data log-likelihood function in
Eq. 4, we can update the parameters θ by

θ̂ = arg maxQ(θ;θ′). (8)

The M-step in Eq. 8 can be conducted by stochastic gradient descent commonly
used in deep network optimization for Eq. 1. Our entire algorithm is outlined in
Algorithm 1.
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3 Experiments

We used 3 datasets, LUNA16 dataset [12] as fully supervised nodule detec-
tion, NCI NLST1 dataset as weakly supervised detection, Tianchi Lung Nod-
ule Detection2 dataset as holdout dataset for test only. LUNA16 dataset is the
largest publicly available dataset for pulmonary nodules detection [12]. LUNA16
dataset removes CTs with slice thickness greater than 3 mm, slice spacing incon-
sistent or missing slices, and consist of 888 low-dose lung CTs which have explicit
patient-level 10-fold cross validation split. NLST dataset consists of hundreds of
thousands of lung CT images associated with electronic medical records (EMR).
In this work, we focus on nodule detection based on image modality and only
use the central slice and nodule location as weak supervision from the EMR. As
part of data cleansing, we remove negative CTs, CTs with slice thickness greater
than 3 mm and nodule diameter less than 3 mm. After data cleaning, we have
17,602 CTs left with 30,951 weak annotations. In each epoch, we randomly sam-
ple 1

16 CT images for weakly supervised training because of the large numbers of
weakly supervised CTs. Tianchi dataset contains 600 training low-dose lung CTs
and 200 validation low-dose lung CTs for nodule detection. The annotations are
location centroids and diameters of the pulmonary nodules, and do not have less
than 3 mm diameter nodule, which are the same with those on LUNA16 dataset.

Parameter Estimation in P (zm|Hm;θ). If the current zm is within the nod-
ule, it is a true positive proposal. We can model |zm−zHm

| using a half-Gaussian
distribution shown as the red dash line in Fig. 2(a). The parameters of the half-
Gaussian is estimated from the LUNA16 data empirically. Because LUNA16
removes nodules of diameter less than 3 mm, we use the truncated half-Gaussian
to model the central slice zm as max(|zm − zHm

| − μ, 0), where μ is the mean of
related Gaussian as the minimal nodule radius with 1.63.

Performance Comparisons on LUNA16. We conduct 10-fold cross valida-
tion on LUNA16 to validate the effectiveness of DeepEM. The baseline method is
Faster R-CNN with 3D Res18 network denoted as Faster R-CNN [14]. Then we
employ it to model P (Hm|I;θ′) for weakly supervised detection scenario. Two
inference scheme for Hm are used in DeepEM denoted as DeepEM (MAP)
and DeepEM (Sampling). In the proposal inference of DeepEM with Sam-
pling, we sample two proposals for each weak label because the average number
of nodules each CT is 1.78 on LUNA16. The evaluation metric, Free receiver
operating characteristic (FROC), is the average recall rate at the average num-
ber of false positives at 0.125, 0.25, 0.5, 1, 2, 4, 8 per scan, which is the official
evaluation metric for LUNA16 and Tianchi [12].

From Fig. 2(b), DeepEM with MAP improves about 1.3% FROC over Faster
R-CNN and DeepEM with Sampling improves about 1.5% FROC over Faster
R-CNN on average on LUNA16 when incorporating weakly labeled data from
NLST. We hypothesize the greater improvement of DeepEM with Sampling over

1 https://biometry.nci.nih.gov/cdas/datasets/nlst/.
2 https://tianchi.aliyun.com/.

https://biometry.nci.nih.gov/cdas/datasets/nlst/
https://tianchi.aliyun.com/
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Fig. 2. (a)Empirical estimation of half-Gaussian model for P (zm|Hm; θ) on LUNA16.
(b) FROC (%) comparison among Faster R-CNN [14], DeepEM with MAP, DeepEM
with Sampling on LUNA16.

DeepEM with MAP is that MAP inference is greedy and can get stuck at a local
minimum while the nature of sampling may allow DeepEM with Sampling to
escape these local minimums during optimization.

Performance Comparisons on Holdout Test Set from Tianchi. We
employed a holdout test set from Tianchi to validate each model from 10-fold
cross validation on LUNA16. The results are summarized in Table 1. We can see
DeepEM utilizing weakly supervised data improves 3.9% FROC on average over
Faster R-CNN. The improvement on holdout test data validates DeepEM as an
effective model to exploit potentially large amount of weak data from electronic
medical records (EMR) which would not require further costly annotation by
expert doctors and can be easily obtained from hospital associations (Fig. 3).

Table 1. FROC (%) comparisons among Faster R-CNN with 3D ResNet18 [14],
DeepEM with MAP, DeepEM with Sampling on Tianchi.

Fold 0 1 2 3 4 5 6 7 8 9 Average

Faster R-CNN 72.8 70.8 69.8 71.9 76.4 73.0 71.3 74.7 72.9 71.3 72.5

DeepEM (MAP) 77.2 75.8 75.8 74.9 77.0 75.5 77.2 75.8 76.0 74.7 76.0

DeepEM
(Sampling)

77.4 75.8 75.9 75.0 77.3 75.0 77.3 76.8 77.7 75.8 76.4

Visualizations. We compare Faster R-CNN with the proposed DeepEM visu-
ally in Fig. 3. We randomly choose nodules from Tianchi. From Fig. 3, DeepEM
yields better detection for nodule center and tighter nodule diameter which
demonstrates DeepEM improves the existing detector by exploiting weakly
supervised data.
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Fig. 3. Detection visual comparison among Faster R-CNN [14], DeepEM with MAP
and DeepEM with Sampling on nodules randomly sampled from Tianchi. DeepEM
provides more accurate detection (central slice, center and diameter) than Faster R-
CNN.

4 Conclusion

In this paper, we have focused on the problem of detecting pulmonary nodules
from lung CT images, which previously has been formulated as a supervised
learning problem and requires a large amount of training data with the loca-
tions and sizes of nodules precisely labeled. Here we propose a new framework,
called DeepEM, for pulmonary nodule detection by taking advantage of abun-
dantly available weakly labeled data extracted from EMRs. We treat each nod-
ule proposal as a latent variable, and infer the posterior probabilities of proposal
nodules being true ones conditioned on images and weak labels. The posterior
probabilities are further fed to the nodule detection module for training. We use
an EM algorithm to train the entire model end-to-end. Two schemes, maximum
a posteriori (MAP) and sampling, are used for the inference of proposals. Exten-
sive experimental results demonstrate the effectiveness of DeepEM for improving
current state of the art nodule detection systems by utilizing readily available
weakly supervised detection data. Although our method is built upon the specific
application of pulmonary nodule detection, the framework itself is fairly general
and can be readily applied to other medical image deep learning applications to
take advantage of weakly labeled data.
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