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Abstract. Automatic diagnosis of diabetic retinopathy (DR) using reti-
nal fundus images is a challenging problem because images of low grade
DR may contain only a few tiny lesions which are difficult to perceive
even to human experts. Using annotations in the form of lesion bound-
ing boxes may help solve the problem by deep learning models, but fully
annotated samples of this type are usually expensive to obtain. Missing
annotated samples (i.e., true lesions but not included in annotations)
are noise and can affect learning models negatively. Besides, how to uti-
lize lesion information for identifying DR should be considered carefully
because different types of lesions may be used to distinguish different
DR grades. In this paper, we propose a new framework for unifying
lesion detection and DR identification. Our lesion detection model first
determines the missing annotated samples to reduce their impact on
the model, and extracts lesion information. Our attention-based network
then fuses original images and lesion information to identify DR. Experi-
mental results show that our detection model can considerably reduce the
impact of missing annotation and our attention-based network can learn
weights between the original images and lesion information for distin-
guishing different DR grades. Our approach outperforms state-of-the-art
methods on two grand challenge retina datasets, EyePACS and Messidor.

1 Introduction

Diabetic retinopathy (DR) is one of the most severe complications of diabetes,
which can cause vision loss or even blindness. DR can be identified by oph-
thalmologists based on the type and count of lesions. Usually, the severity of
DR is rated on a scale of 0 to 4: normal, mild, moderate, severe, and prolif-
erative. As shown in Fig. 1(b), grades 1 to 3 are classified as non-proliferative
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DR (NPDR), which can be identified by the amount of lesions including microa-
neurysm (MA), hemorrhages (HE), and Exudate (EXU). Grade 4 is proliferative
DR (PDR) whose lesions (such as retinal neovascularization (RNV)) are differ-
ent from those of other grades. Ophthalmologists can identify the presence of
DR by examining digital retinal fundus images, but this is a time-consuming and
manual-intensive process. Thus, it is important to develop an automatic method
to assist DR diagnosis for better efficiency and reducing expert labor.

Grade 1 Grade 2 Grade 3 Grade 4
(a) (b)

Fig. 1. (a) Missing annotated lesions in images. Yellow dotted boxes are ophthalmol-
ogists’ notes and blue arrows indicate missing annotation. (b) DR grades can be iden-
tified by the types and count of lesions (yellow: MA, blue: HE, green: EXU, and red:
RNV). The lesions for Grade 4 are different from those of other grades.

There are mainly two kinds of machine learning methods for identifying DR.
The first kind uses image-level labels to train a classification model that distin-
guishes DR grades directly. Kumar et al. [7] tackled this task as abnormality
detection using a mixture model. Recently, deep learning techniques, such as
convolution neural networks (CNN), have been employed to identify DR [5][3].
Wang et al. [11] used CNN feature maps to find the more important locations,
thus improving the performance. But, tiny lesions (e.g., MA and HE) may be
neglected by these methods with only image-level labels, affecting prediction
accuracy, especially for DR grades 1 and 2. The second kind of methods first
detects lesions for further processing. Dai et al. [2] tried to detect lesions using
clinical reports. van Grinsven et al. [4] sped up model training by selective data
sampling for HE detection. Seoud et al. [9] used hand-crafted features to detect
retinal lesions and identify DR grade. Yang et al. [13] gave a two-stage frame-
work for both lesion detection and DR grading using annotation of locations
including MA, HE, and EXU.

Fusing lesion information to identify DR can effectively help the models per-
form better. However, there are still other difficulties to handle: (i) A common
problem is that usually not all lesions are annotated. In retinal fundus images, the
amount of MA and HE is often relatively large, and experts may miss quite some
lesions (e.g., see Fig. 1(a)). Note that the missing annotated lesions are treated
as negative samples (i.e., background) and thus are “noise” to the model. (ii)
Not all kinds of lesions are beneficial to distinguishing all DR grades. For exam-
ple, DR grade 4 (PDR) can be identified using RNV lesions, but has no direct
relationship with MA and HE lesions (see Fig. 1(b)). If we fuse the information
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of these two types of lesions directly, it may be noisy information to detecting
PDR and affect the model’s performance.

To handle these difficulties, we develop a new framework for identifying DR
using retinal fundus images based on annotation that includes DR grades and
bounding boxes of MA and HE lesions (possibly with a few missing annotated
lesions). We first extract lesion information into a lesion map by a detection
model, and then fuse it with the original image for DR identification. To deal
with noisy negative samples induced by missing annotated lesions, our detec-
tion model uses center loss [12], which can cluster the features of similar sam-
ples around a feature center called Lesion Center. We also propose a sampling
method, called Center-Sample, to find noisy negative samples by measuring their
features’ similarity to the Lesion Center and reduce their sampling probabili-
ties. Besides, we adapt center loss from classification tasks to detection tasks
efficiently, which makes the model more discriminative and robust. In the classi-
fication stage, we integrate feature maps of the original images and lesion maps
using an Attention Fusion Network (AFN). AFN can learn the weights between
the original images and lesion maps when identifying different DR grades to
reduce the interference of unnecessary lesion information on classification. We
evaluate our framework using datasets collected from a local hospital and two
public datasets, EyePACS and Messidor. Experimental results show that our
Center-Sample mechanism can effectively determine noisy samples and achieve
promising performance. Our AFN can utilize lesion information well and out-
perform the state-of-the-art methods on the two public datasets.
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Fig. 2. The Center-Sample Detector (left) predicts the probabilities of the lesions using
the anti-noise Center-Sample Module. Then AFN (right) uses the original image and
detection model output as input to identify DR (fies and for; are feature maps, Wies
and Wo,; are attention weights).
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2 Method

This section presents the key components of our approach, the Center-Sample
detector and Attention Fusion Network. As shown in Fig. 2, the detection model
predicts the probabilities of the lesions in the entire image. Then AFN uses both
the original image and detection model output as input to identify DR grades.

2.1 Center-Sample Detector

The Center-Sample detector aims to detect n types of lesions (here, n = 2,
for MA and HE) in a fundus image. Figure2 gives an overview of the Center-
Sample detector, which composes of three main parts: shared feature extractor,
classification/bounding box detecting header, and Noisy Sample Mining module.

The first two parts form the main network for lesion detection to predict the
lesion probability map. Their main structures are adapted from SSD [8]. The
backbone until conv4_3 is used as feature extractor, and the detect headers are
the same as SSD. The third part includes two components: Sample Clustering for
clustering similar samples and Noisy Sample Mining for determining the noisy
samples and reducing their sampling weight.

Sample Clustering. Here we show how to adapt center loss in classification
tasks to detection tasks and how to cluster similar samples using center loss. This
component begins by taking the feature map from the shared feature extractor,
which is a tensor of size h x w x c. We transform it to a feature map u of size
h xwxd (d < ¢) by adding 1x1 convolution layers after the shared feature
extractor. Each position u;; in u is a d-D vector, called deep feature, as shown
in Fig. 2. That is, u;; is a feature vector mapped from a corresponding position
patch f;; in the original image to a high-dimensional feature space S, where
fi; denotes the receptive field of u;;. We assign each u;; with a label indicating
whether a lesion is in the corresponding position and (if yes) which type of lesion
it is (in Fig.2, different colors are for different labels). Thus, there are totally
n + 1 label classes including background (no lesion in corresponding location)
and n classes of lesions. We treat background as negative samples and the n
classes of lesions as positive samples. Then, we average the deep features u;; of
each class to obtain n+ 1 feature centers (the centers of positive labels are called
lesion centers), and make the u;; cluster around their corresponding center in
the space S using center loss [12] (in Fig.2, the triangles denote the centers):
Lo=3520 Z?Zl |[uij — cy,, |13, where y;; € [0,n] is the corresponding label of
ui; in location (7,7), and ¢,,; € R? is the center of the yi;-th class. During the
detection training phase, we minimize Lo and simultaneously update the feature
centers using the SGD algorithm in each iteration, to make the u;; cluster to the
center cy, . Note that the deep features u;; of noisy negative samples become
closer to the corresponding lesion center c¢,,; than true negative samples after
several iterations.

Noisy Sample Mining. In the Noisy Sample Mining module, we reduce the
impact of noisy negative samples by down-weighting them. First, for each u;;
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labeled as a negative sample, we select the minimum £2 distance between u;;
and all lesion centers, denoted by min-dist;; and sort all elements in min-dist
in increasing order. Then, the sampling probability P(u;;) is assigned as:

0 0<ry <ty
Puij) = (7,51]__;;)7 by S iy <ty (1)
1 T35 2> ty

where 7;; is the rank of u;; in min-dist. Note that u;; is close to lesion centers
if 7;; is small. The lower bound #; and upper bound t, of sampling ranking
and 7 are three hyper-parameters. If r;; < t,, then u;; shall be a noisy sample
with high probability and we ignore it by setting the sampling probability to
0. P(uij) is set to 1.0 when r;; > t, for treating u;; as a true negative sample.
~ smoothly adjusts the sampling probability between ranks ¢; and t,. We treat
the summation of L& and detection loss in [8] as multi-task loss for robustness.
In [12], center loss is required for a comparable large batch size for stable center
gradient computing, but in our method, a large number of deep features ensures
the stability in small batch size.

During the training phase, we train the model with cropped patches of the
original images that include lesions. During the inference phase, a whole image
is fed to the trained model, and the output is a tensor M of size h X w X n,
where every n-D vector M;; in M denotes the maximum probability among all
Anchor Boxes in this position for each lesion. We take this tensor, called Lesion
Map, as the input of the Attention Fusion Network.

2.2 Attention Fusion Network

As stated in Sect. 1, some lesion information can be noise to identifying certain
DR grades. To resolve this issue, we propose an information fusion method based
on attention mechanism [1], called Attention Fusion Network (AFN). AFN can
produce the weights based on the original images and lesion maps to reduce
the impact of unneeded lesion information for identifying different DR grades.
AFN contains two feature extractors and an attention network (see Fig.2). The
scaled original images and lesion maps are the inputs of two separate feature
extractors, respectively. We extract feature maps f,.; and fies using these two
CNNs. Then, fo-; and fs are concatenated on channel dimension as the input
of the attention network.

The attention network consists of a 3 x 3 Conv, a ReLLU, a dropout, a 1 x 1
Conv, and a Sigmoid layer. It produces two weight maps W,,.; and Wi, which
have the same shape as the feature maps f,; and fi.s, respectively. Then, we
compute the weighted sum f(3, j, ¢) of the two feature maps as follows:

f(iaja C) = Wori(iajac) © fori(i7ja C) + Wles(i;ja C) © fles(imja C) (2)

where o denotes element-wise product. The weights W,,,.; and W, are computed

as W (i, j,c) = m, where h(i, j, ) is the last layer output before Sigmoid
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produced by the attention network. W (i, j, ¢) reflects the importance of the fea-
ture at position (4, j) and channel ¢. The final output is produced by performing
a softmax operation on f(i, j, c) to get the probabilities of all grades.

3 Experiments

In this section, we evaluate Center-Sample detector and AFN on various
datasets.

3.1 Evaluating Center-Sample Detector

Dataset and Evaluation Metric. A private dataset was provided by a local
hospital, which contains 13k abnormal (more severe than grade of 0) fundus
images of size about 2000 x 2000. Lesion bounding boxes were annotated by
ophthalmologists, including 25k MA and 34k HE lesions, with about 26% miss-
ing annotated lesions. The common metric for object detection mAP is used as
the evaluation metric since it reflects the precision and recall of each lesion.

Implementation Details. In our experiments, we select MA and HE lesions
as the detection targets since other types of lesions are clear even in compressed
images (512 x 512). During training, we train the model with cropped patches
(300 x 300) which include annotated lesions from the original images. Random
flips are applied as data augmentation. We use SGD (momentum = 0.9, weight
decay =107°) as the optimizer and batch size is 16. The learning rate is initial-
ized to 1073 and divided by 10 after 50k iterations. When training the Center-
Sample detector, we first use center loss and detection loss as multi-task loss for
pre-training. Then the Center-Sample mechanism is included after 10k training

steps. t; and t,, are set to 1st and 5th percentile among all deep features in one
batch.

Results and Analysis. We evaluate the effects of the Center-Sample compo-
nents by adding them to the detection model one by one. Table 1 shows that the
base detection network (BaseNet), which is similar to SSD, gives mAP =41.7%.
After using Center Loss as one part of multi-task loss, it raises to 42.2%. The
Center-Sample strategy further adds 1.4% to it, with the final mAP =43.6%.
Note that common detectors like SSD lack mechanisms to address the miss-
ing annotation issue. The results show the robustness of our proposed method.
Figure 3 visualizes some regions where deep features are close to lesion centers.

3.2 Evaluating the Attention Fusion Network

Datasets and Evaluation Metric. The private dataset used (which is dif-
ferent from the one for evaluating Center-Sample above) contains 40k fundus
images, with 31k/3k/4k/1.1k/1k images for DR grades 0 to 4 respectively,
rated by ophthalmologists. The EyePACS dataset gives 35k/11k/43k images for
train/val/test sets, respectively. The Messidor dataset has 1.2k retinal images
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with different criteria for DR grades 0 to 3. For the EyePACS dataset and the
private dataset, we adopt the quadratic weighted kappa score which can effec-
tively reflect the performance of the model on an unbalanced dataset. For the
Messidor dataset, we refer to the experimental methods [11] and conduct tasks of
referable v.s. non-referable and normal v.s. abnormal, with AUC as the metric.

Implementation Details. We use two ResNet-18 [6] as the feature extractors
for both inputs. The preprocessing includes cropping the images and resizing
them to 224 x 224. Random rotations/crops/flips are used as data augmenta-
tion. AFN is trained with the SGD algorithm. All models are trained for 300k
iterations with the initial learning rate=10"° and divided by 10 at iterations
120k and 200k. Weight decay and momentum are set to 0.1 and 0.9.
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Table 2. Results on private

Table 1. Results of the Center- d
ataset.

Sample components.

Algorithms | kappa | acc.
BaseNet VoV Baseline | 0.786 | 0.843
Center Loss VoY Two-stage | 0.804 | 0.849
Center-Sample v Concated | 0.823 | 0.854
mAP(%) 417422 43.6 AFN 0.675 | 0.873

Results on the Private Dataset. We evaluate AFN and several models on the
private dataset as shown in Table 2. Baseline only employs scaled original images
as input to ResNet-18 for training. We re-implement the feature fusion method
in [13], called Two-stage. Another fusion method that concatenates lesion maps
and scaled images on channel dimension (called Concated) is compared, since
both these inputs equally contribute to identifying DR with this method. Our
approach outperforms the other methods considerably. Note that the Two-stage
method performs not as well as in the original paper [13] on our dataset, possibly
for the following reasons. (a) The Two-stage method cannot identify grade 4 well,
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Table 3. Kappa on the EyePACS.
Table 4. AUC for referral/normal

Algorithms val test tasks

Min-pooling* 0.860 |0.849

0.0 0.854 | 0.844 Method referral | normal
Zoom-in-Net [11] | 0.865 | 0.854 Comp. CAD [10] |0.910 | 0.876
AFN 0.871 | 0.859 DSF-RFcare [9] ]0.916 |0.899
*https:/ /www kaggle.com/c/ Zoom-in-Net [11] | 0.957 |0.921
diabetic-retinopathy-detection/ AFN 0.968 |0.935

leaderboard

because MA and HE lesions might be noisy information for grade 4. (b) There are
some unannotated lesions in our dataset. We visualize F1 scores of identifying
PDR (grade 4) in Fig.4, which shows AFN has similar ability as Baseline to
determine PDR, and other models perform better than Baseline as a whole but
worse in PDR identification. This shows the lesion maps of MA and HE are
useless noisy information for PDR and our AFN can reduce the impact.

Results on EyePACS and Messidor. We use the Center-Sample detector
trained on the private datasets to produce EyePACS and Messidor’s lesion maps.
Table 3 shows that AFN obtains kappa scores of 0.857 and 0.849 on the val/test
sets, respectively. Since the size of Messidor is quite small for training CNNs
from scratch, we fine-tune AFN using weights pre-trained on EyePACS. Table 4
shows the results of proposed approach compared with previous studies. To our
best knowledge, we achieve state-of-the-art results on both public datasets.

4 Conclusions

In this paper, we proposed a new framework unifying lesion detection and DR,
grade identification. With the Center-Sample detector, we can use low quality
annotated data to train an effective model, and employ center loss to make the
model more discriminative and robust. Further, using a new information fusion
method based on attention mechanism, we achieve better DR identification.
Experiments showed that our approach outperforms state-of-the-art methods.
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