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Abstract. As a “hallmark of cancer”, tumor-induced angiogenesis is one
of the most important mechanisms of a tumor’s adaptation to changes
in nutrient requirement. The angiogenic activity of certain tumors has
been found to be predictive of a patient’s ultimate response to therapeu-
tic intervention. This then begs the question if there are differences in
vessel arrangement and corresponding convolutedness, between tumors
that appear phenotypically similar, but respond differently to treatment.
Even though textural radiomics and deep learning-based approaches
have been shown to distinguish disease aggressiveness and assess ther-
apeutic response, these descriptors do not specifically interpret differ-
ences in vessel characteristics. Moreover, most existing approaches have
attempted to model disease characteristics just within tumor confines, or
right outside, but do not consider explicit parenchymal vessel morphol-
ogy. In this work, we introduce VaNgOGH (Vascular Network Organi-
zation via Hough transform), a new descriptor of architectural disorder
of the tumor’s vascular network. We demonstrate the efficacy of VaN-
gOGH in two clinically challenging problems: (a) Predicting pathologi-
cally complete response (pCR) in breast cancer prior to treatment (BCa,
N = 76) and (b) distinguishing benign nodules from malignant non-small
cell lung cancer (LCa, N = 81). For both tasks, VaNgOGH had test
area under the receiver operating characteristic curve (AUCBCa = 0.75,
AUCLCa = 0.68) higher than, or comparable to, state of the art radiomic
approaches (AUCBCa = 0.75, AUCLCa = 0.62) and convolutional neu-
ral networks (AUCBCa = 0.67, AUCLCa = 0.66). Interestingly, when a
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known radiomic signature was used in conjunction with VaNgOGH,
AUCBCa increased to 0.79.

1 Introduction

Angiogenesis, the process by which a tumor hijacks the body’s machinery for
creating new vasculature in order to redirect blood flow to itself [1], plays an
important role in determining tumor response to chemo- and radiotherapy. Stim-
ulatory signals, such as vascular endothelial growth factor (VEGF) expression,
result in neovascularization [2], ultimately leading to sprouting and irregular
branching of blood vessels, or erratic angiogenesis. The associated tortuosity
and leakiness directly affects the course of disease progression, and possibly its
response to therapeutic interventions. For example, it has been qualitatively
shown that temporal changes in vessel tortuosity on brain magnetic resonance
imaging (MRI) are indicative of a favorable response to therapy [3]. A more
convoluted tumor vasculature might constrict the delivery of therapeutic drugs
to the lesion, thereby resulting in potentially worse prognosis and treatment
response.

These qualitative observations therefore beg the question as to whether com-
puterized analysis of tumor vasculature could (a) reveal differences in malig-
nant and benign tumors as well as patients who undergo differential treatment
response (see Fig. 1) and (b) whether these measurements could be translated
into new imaging biomarkers of tumor diagnosis and treatment response.

Fig. 1. Differences in tumor vascular network from baseline DCE-MRI scans for two
different breast cancer patients (upper row: pCR and bottom row: non-pCR) who
received neoadjuvant chemotherapy.

In this work, we present a new image-based descriptor, Vascular Network
Organization via Hough transform (VaNgOGH), which attempts to model the
architectural disorder of a tumor’s vascular network by computing local mea-
sures of vessel-curvature in the Hough parameter space. VaNgOGH first looks
at projections of vascular segmentations along different planes, in cartesian, as
well as spherical coordinates. This is followed by localized Hough transforms to
identify dominant peaks in the accumulator space. The applicability is demon-
strated in two clinically challenging tasks: (a) predicting pathologic complete
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response (pCR) from non-response (non-pCR) to chemotherapy in breast can-
cer from pre-treatment dynamic contrast-enhance (DCE) MRI and (b) distin-
guishing benign granulomas from malignant adenocarcinomas from non-contrast
computed tomography (CT) scans.

2 Previous Work and Novel Contributions

While there has been substantial interest in both radiomics and deep learning
approaches for disease diagnosis as well as treatment response of tumors, most
of these feature analysis approaches have been limited either to the tumor [4,5]
or the associated parenchyma [6,7]. Recent work such as [6], which leveraged
textural features of the tumor and the surrounding peri-tumoral tissue to pre-
dict therapeutic response from breast MRI, suggests the discriminating nature
of the tumor microenvironment on imaging and the potential of extra-tumoral
quantitative analysis. However, there is a lack of radiomic features capable of
directly targeting biological aspects of the microenvironment, such as vascular-
ity. VaNgOGH represents a novel approach for the characterization of chaotic
vasculature associated with tumor-induced angiogenesis. In capturing morphol-
ogy of the tumor-associated vascular network, VaNgOGH implicitly captures
functional attributes of the tumor.

A unique advantage of VaNgOGH over other state-of-the-art quantitative
metrics of vessel architecture is its capability to define abnormal vessel arrange-
ment across multiple planes and projections, and relative to the tumor core and
boundary itself. Specifically, VaNgOGH invokes Hough transformation to charac-
terize the vessel network across multiple spatial representations, operating both
in the cartesian domain, to capture disorder in the plane of image acquisition,
and in the spherical domain, to capture deflections of neighboring vasculature
towards the tumor centroid due to angiogenesis. In the latter operation, we fur-
ther leverage the spherical coordinate space by computing VaNgOGH beyond the
tumor within annular bands of increasing radius and summarize across regions in
order to capture the magnitude of the tumor’s angiogenic influence. VaNgOGH
features consist of the first order statistics of maximum Hough peak orientations
computed in a sliding fashion across vessel projections summarizing vasculature
orientation in the following domains: the XY -plane, distance from the tumor vs.
azimuthal rotation, distance from the tumor vs. elevation angle, and azimuthal
rotation vs. elevation angle.

In this work, we evaluated the approach on N = 157 breast and lung cancer
patients in predicting treatment response and cancer presence, also comparing
the approach against a convolutional neural network (CNN) and state-of-the-art
textural radiomic measures of tumoral and peri-tumoral regions.

3 Methodology

3.1 Notation

We define an image scene I as I = (C, f), where I is a spatial grid C of
voxels c ∈ C, in a 3-dimensional space, R

3. Each voxel, c ∈ C is associated
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Fig. 2. Overview of VaNgOGH computational workflow.

with an intensity value f(c). IT , and IP correspond to the intra-tumoral and
surrounding peritumoral parenchyma sub-volumes within every I respectively,
such that [IT , IP ] ⊂ I. We further divide the sub-volume IP into uniformly
sized annular sub-volumes Ij

N , where j is the number of uniformly-sized annular
bands, such that j ∈ {1, . . . , k}, and k is an user-defined proximity parameter
dependent on the distance g from the tumor margin. For each I, there exists a
corresponding tumor segmentation T and vessel segmentation V.

3.2 VaNgOGH Descriptor

1. Segmentation and skeletonization of tumor and vasculature
A segmentation algorithm is applied to I, yielding a volume T containing the
tumor, and a volume V containing the surrounding tumor-associated vascu-
lature (Fig. 2(a)). T is subtracted from V to ensure that there are no residual
tumor voxels within the segmented vasculature. A fast marching approach is
employed to compute the centerlines of vessels within V, forming S: a series of
points in 3-dimensional cartesian space comprising the medial axis skeleton of
V (Fig. 2(b)). Segmentation algorithms utilized for each dataset are described
in greater detail in Sects. 4.3 and 4.4.

2. Obtain 2-Dimensional vessel network representations in cartesian
and spherical domains.
(a) Cartesian domain: S is projected along the plane of image acquisition, z,

in order to obtain a 2-dimensional representation of the vasculature, Vxy,
which depicts the vascular network in the XY plane (Fig. 2(c)).

(b) Spherical domain: The vascular network is converted to spherical coor-
dinates and projected along each spherical axis to yield three 2-D
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representations of 3-D vessel orientation with respect to the tumor cen-
troid. Each point within S is converted to its spherical coordinates relative
to the tumor centroid, D. Let xD, yD, and zD represent distance from
D of a point Si within S along the corresponding cartesian axes. Each
Si then corresponds to an azimuth α and an elevation φ, indicating rota-
tion around the z-axis and angle from the XY -plane, respectively, such
that α = arctan( yD

xD
) and φ = arctan( zD√

x2
D+y2

D

). A third spherical coor-

dinate, r, given by argmin(
√

(xD − T j
x )2 + (yD − T j

y )2 + (zD − T j
z )2)

defines the Euclidean distance between Si and the nearest voxel within
T . This conversion is repeated for each Si in S, yielding a 3-D skeleton
within the spherical coordinate space, Srαφ. Srαφ is projected along each
spherical dimension to yield the following 2-dimensional representations
of 3-D vessel orientation relative to the tumor centroid in spherical space:
V j

rα, azimuth angle with respect to Euclidean distance from the tumor
(Fig. 2(f)); V j

rφ, elevation angle with respect to Euclidean distance from
the tumor (Fig. 2(e)); and V j

αφ, elevation angle with respect to azimuth
angle (Fig. 2(d)).

3 Sliding Hough transforms and aggregate peak orientations.
(a) Computation and aggregation of localized Hough transforms in the carte-

sian space: Using a N × N sliding window W with an offset of k
pixels, each pixel in Vxy is mapped to an accumulator space using
the Hough Transform, where the equation of a line is represented by
y = (− cosθ

sinθ )x + ( ρ
sinθ ). This transforms the spatial coordinate system

(x, y) to the polar coordinate system (ρ, θ), such that for every point on
the medial axis representation Vxy, there exists a unique sinusoid in the
Hough accumulator space (Fig. 2(g)). The five grid locations accumulat-
ing the most sinusoid crossings are identified for each W. Feature set Fxy

then comprises the θ values associated with the five most prominent peak
orientations such that Fxy = [θ1, θ2, ...θ5].

(b) Computation of localized Hough transforms on spherical projections within
annular sub-volumes: For a given annular sub-volume outside the tumor
Ij

N , 2-D spherical representations are obtained from vessels only within
the sub-volume, denoted as V j

rα, V j
rφ, and V j

αφ. Peaks are computed from
2-D spherical representations using the above approach. This is repeated
for all annular bands j ∈ {1, . . . , k}. Peak orientations are concatenated
for all annular bands, yielding a single feature vector, i.e. Frα = [F1

rα,
F2

rα, ... Fk
rα], Frφ = [F1

rφ, F2
rφ, ... Fk

rφ], and Fαφ = [F1
αφ, F2

αφ, ... Fk
αφ].

4. Computation of VaNgOGH descriptor
The final VaNgOGH feature set, FV , is a concatenation of the first order
statistics, mean, median, standard deviation, skewness, and kurtosis, of Fxy,
Fk

rα, Fk
rφ, and Fk

αφ
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4 Experimental Results and Discussion

4.1 Data Description

Dataset 1 included axial breast DCE-MRIs, collected prior to administration
of neoadjuvant chemotherapy with a 1.5/3T magnet. Dataset 2 included non-
contrast lung CT scans, collected from two sites. Patients were divided at random
into training and testing cohorts as shown in Table 1. All studies were acquired
as part of an Institutional Review Board-approved, HIPAA-compliant protocol.

4.2 Comparative Strategies and Classifier Construction

Intra- and Peri-tumoral Radiomics: For Experiment 1, VaNgOGH was
compared against four radiomic features capable of predicting response on pre-
treatment DCE-MRI, previously published in [6]. The feature comprised 2 intra-
tumoral features (CoLlAGe Info1 [8], Laws S5R5) and 2 peri-tumoral features
(Laws L5S5, CoLlAGe Entropy). In Experiment 2, we used the same list of fea-
tures described in [6], with the most important features being three intranodular
low frequency Gabor and a perinodular Laws W5E5 feature.

Convolutional Neural Network: We used a multi-layer 2D LeNet-like archi-
tecture [9], comprising three sets of convolutional, activation (ReLU), and
pooling layers, followed by a fully-connected layer, activation, another fully-
connected, and finally a softmax classifier. In this patch-based classification app-
roach, the softmax classifier returns the probability of each patch belonging to
the two classes of interest. The model was trained over 100 epochs.

Feature Selection and Classifier Construction: Once the VaNgOGH and
other radiomic features were extracted, a set of 4 top features were selected
by Wilcoxon rank-sum test and training of a linear discriminant analysis clas-
sifier was performed in a 3-fold cross-validation setting across 100 iterations.
The locked-down model was then applied to the independent validation cohorts.
Performance of individual classifiers was assessed by the area under the receiver
operating characteristic curve (AUC) (Fig. 2(h)).

4.3 Experiment 1: Pre-treatment Response Prediction in Breast
Cancer DCE-MRI

Implementation Details. Subtraction images were derived from MRI scans
prior to, and immediately following contrast agent injection. Multi-scale vessel
enhancement [10] was performed to emphasize the vasculature, which was then
isolated by thresholding. A series of morphological operations were performed to
remove noise and join adjacent vascular regions. Tumor boundaries were delin-
eated by an expert radiologist. Hough transforms were applied to image projec-
tions using a sliding window size of N = 30 pixels with a step size k = 5 pixels.
Spherical projections were performed within annular sub-volumes with a radial
width of 25 pixels out to a maximum radial distance of 100 pixels, with a step
size = 12.5 pixels.
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Table 1. Dataset for the two experiments

Experiment 1 (N = 76) Experiment 2 (N = 81)

Training 14 pCR, 39 non-pCR 20 Adenocarcinoma, 21 Granuloma

Testing 10 pCR, 13 non-pCR 20 Adenocarcinoma, 20 Granuloma

Fig. 3. Performance AUC on independent validation sets using VaNgOGH, textural
radiomics and CNN.

Results: pCR demonstrates a less chaotic vascular network, potentially evi-
denced by projection images in Fig. 1(c) on the cartesian plane and a distance-
elevation image in Fig. 1(d) on the spherical plane. Hough transformation on (c)
and (d) further accentuates the differences in vessel arrangement by detecting
the orientation of straight line segments in the accumulator grid. The best dis-
criminating VaNgOGH features comprised the standard deviation and kurtosis
of F1

αφ and skewness and kurtosis of F1
rφ. Kurtosis of F1

rφ was elevated in pCR
(Fig. 1(e)), indicating a reduced disorder of vessel orientation in the Vrφ space.
The training AUCs were .63 ± .06 and .64 ± .07 using VaNgOGH and texture fea-
tures, respectively. Combining VaNgOGH and texture resulted in an improved
testing AUC of .79. Testing AUCs have are shown in Fig. 3.

4.4 Experiment 2: Malignancy Diagnosis for Lung Nodules

Implementation Details. Distinguishing granulomas from adenocarcinomas
is amongst the most challenging clinical problems for lung radiologists. Nodules
were manually segmented by a cardiothoracic radiologist. To obtain the vascu-
lature, lung regions were first isolated from the surrounding anatomy using a
multi-threshold based algorithm [11]. This was followed by region growing [12].
The center of gravity of the segmented nodules was used as the initial seed
point for the region growing algorithm [13]. Within the nodule volume, seed
points were initialized at random locations. Based off the intensity similarity of
the seed points and surrounding pixels, an initial region was iteratively grown
to encompass the nodule and associated vasculature. VaNgOGH features were
extracted using the approach described in Sect. 4.3.



810 N. Braman et al.

Results: As may be observed from Fig. 4, although both nodules are highly vas-
cularized, spherical projections (below) accentuate the elevated disorder of the
vascular network in adenocarcinoma, whereas granuloma vessel orientations are
predominantly linear in the V j

αφ (d) and V j
rα (e) spaces. VaNgOGH successfully

separated adenocarcinomas and granulomas with an AUC of .65± .06 in the
training set. The top feature set included one statistic for each view (standard
deviation of F1

rφ, median of F1
αφ, kurtosis of F1

xy, and skewness of F1
rα). Figure 4

shows elevated vascular disorder in adeno, e.g. increased standard deviation of
F1

rφ in (d). Performance of VaNgOGH in the independent validation set was
comparable to that of the CNN, as shown in Fig. 3.

Fig. 4. VaNgOGH distinguishes similarly appearing granulolomas and adenocarcinoma
on CT. (a) Vessel segmentations and centerlines for a representative adenocarcinoma
and granuloma with high vascularity. (b–e) Box plots corresponding to top VaNgOGH
features.

5 Concluding Remarks

In this work, we presented a new radiomic descriptor, VaNgOGH, that quantifies
disorder of the tumor-associated vascular network by assessing the morphology
of vessel orientation across multiple spatial domains. To the best of our knowl-
edge, VaNgOGH is the first radiomic descriptor of tumor-associated vascular
morphology. We demonstrated the ability of VaNgOGH to (a) predict benefit
of neoadjuvant chemotherapy in breast cancer patients on DCE-MRI (N = 76),
and (b) distinguish malignant adenocarcinoma from visually confounding gran-
uloma on lung CT (N = 81). VaNgOGH performed comparably to deep learn-
ing and state of the art radiomic approaches, and provides greater biological
interpretability. When considered in conjunction with an established radiomic
response signature in breast MRI, VaNgOGH further improved pCR identifi-
cation. Future work will entail larger validation studies and also evaluation on
other use cases.
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