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Abstract. The most recent lung nodule detection studies rely on com-
putationally expensive multi-stage frameworks to detect nodules from
CT scans. To address this computational challenge and provide better
performance, in this paper we propose S4ND, a new deep learning based
method for lung nodule detection. Our approach uses a single feed for-
ward pass of a single network for detection. The whole detection pipeline
is designed as a single 3D Convolutional Neural Network (CNN) with
dense connections, trained in an end-to-end manner. S4ND does not
require any further post-processing or user guidance to refine detection
results. Experimentally, we compared our network with the current state-
of-the-art object detection network (SSD) in computer vision as well
as the state-of-the-art published method for lung nodule detection (3D
DCNN). We used publicly available 888 CT scans from LUNA challenge
dataset and showed that the proposed method outperforms the current
literature both in terms of efficiency and accuracy by achieving an aver-
age FROC-score of 0.897. We also provide an in-depth analysis of our
proposed network to shed light on the unclear paradigms of tiny object
detection.
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1 Introduction

Successful diagnosis and treatment of lung cancer is highly dependent on early
detection of lung nodules. Radiologists are analyzing an ever increasing amount
of imaging data (CT scans) every day. Computer Aided Detection (CAD) sys-
tems are designed to help radiologists in the screening process. However, auto-
matic detection of lung nodules with CADs remains a challenging task. One
reason is the high variation in texture, shape, and position of nodules in CT
scans, and their similarity with other nearby structures. Another reason is the
discrepancy between the large search space (i.e., entire lung fields) and respec-
tively tiny nature of the nodules. Detection of tiny/small objects has remained a
very challenging task in computer vision, which so far has only been solved using
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computationally expensive multi-stage frameworks. Current sate of art methods
for lung nodule detection follow the same multi-stage detection frameworks as
in other computer vision areas.

The literature for lung nodule detection and diagnosis is vast. To date, the
common strategy for all available CAD systems for lung nodule detection is to
use a candidate identification step (also known as region proposal). While some
of these studies apply low-level appearance based features as a prior to drive
this identification task [8], others use shape and size information [5]. Related to
deep learning based methods, Ypsilantis et al. proposed to use recurrent neural
networks in a patch based strategy to improve nodule detection [11]. Krishna-
murthy et al. proposed to detect candidates using a 2D multi-step segmentation
process. Then a group of hand-crafted features were extracted, followed by a
two-stage classification of candidates [5]. In a similar fashion, Huang et al. pro-
posed a geometric model based candidate detection method which followed by
a 3D CNN to reduce number of FPs [4]. Golan et al. used a deep 3D CNN
with a small input patch of 5 × 20 × 20 for lung nodule detection. The network
was applied to the lung CT volume multiple times using a sliding window and
exhaustive search strategy to output a probability map over the volume [3].

There has, also, been detailed investigations of high-level discriminatory
information extraction using deep networks to perform a better FP reduc-
tion [10]. Setio et al. used 9 separate 2D convolutional neural networks trained
on 9 different views of candidates, followed by a fusion strategy to perform FP
reduction [10]. Another study used a modified version of Faster R-CNN, state of
the art object detector at the time, for candidate detection and a patch based 3D
CNN for FP reduction step [1]. However, all these methods are computationally
inefficient (e.g., exhaustive use of sliding windows over feature maps), and often
computed in 2D manner, not appreciating the 3D nature of the nodule space. It
is worth mentioning that patch based methods are 3D but they suffer from the
same computational burdens, as well as missing the entire notion of 3D nodule
space due to limited information available in the patches.

Our Contributions: We resolve the aforementioned issues by proposing a com-
pletely 3D deep network architecture designed to detect lung nodules in a single
shot using a single-scale network. To the best of our knowledge, this is the first
study to perform lung nodule detection in one step. Specific to the architecture
design of the deep network, we make use of convolution blocks with dense con-
nections for this problem, making one step nodule detection computationally
feasible. We also investigate and justify the effect of different down-sampling
methods in our network due to its important role for tiny object detection.
Lastly, we argue that lung nodule detection, as opposed to object detection in
natural images, can be done with high accuracy using only a single scale network
when network is carefully designed with its hyper-parameters.
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2 Method

Figure 1 shows the overview of the proposed method for lung nodule detection in
a single shot. The input to our network is a 3D volume of a lung CT scan. The
proposed 3D densely connected Convolutional Neural Network (CNN) divides
the input volume into a grid of size S×S×T cells. We model lung nodule detec-
tion as a cell-wise classification problem, done simultaneously for all the cells.
Unlike commonly used region proposal networks, our proposed network is able
to reason the presence of nodule in a cell using global contextual information,
based on the whole 3D input volume.

Fig. 1. Our framework, named S4ND, models nodule detection as a cell-wise classifi-
cation of the input volume. The input volume is divided by a 16 × 16 × 8 grid and
is passed through a newly designed 3D dense CNN. The output is a probability map
indicating the presence of a nodule in each cell.

2.1 Single-Scale Detection

As opposed to object detection in natural scenes, we show that lung nodule
detection can be performed efficiently and with high accuracy in a single scale.
Current literature reports the most frequently observed nodule sizes fall within
32 mm by 32 mm [9], most of which are less than 9 mm and are considered as small
(def. American Thoracic Society). Nodules less than 3 mm in size are the most
difficult to detect due to their tiny nature and high similarities to vessels. Based
on the statistics of nodule size and the evidence in literature, we hypothesize
that a single scale framework with the grid size that we defined (16 × 16 × 8
leading to the cell sized of 32 × 32 × 8 on a volume of size 512 × 512 × 8) is
sufficient to fit all the expected nodule sizes and provide good detection results
without the need to increase the algorithmic complexity to multi-scale. This has
been partially proven in other multi-scale studies [2].

2.2 Dense and Deeper Convolution Blocks Improve Detection

The loss of low-level information throughout a network causes either a high
number of false positives or low sensitivity. One efficient way that helps the
flow of information in a network and keeps this low-level information, combining
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it with the high level information, is the use of dense connections inside the
convolution blocks. We empirically show that deeper densely-connected blocks
provide better detection results. This, however, comes with the cost of more
computation. In our experiments we found that dense blocks with 6 convolution
layers provide a good balance of detection accuracy and computational efficiency.

2.3 Max-Pooling Improves Detection

As we go deeper in a CNN, it is desired to pick the most descriptive features and
pass only those to the next layers. Recently, architectures for object detection
in natural images preferred the use of convolutions with stride 2 instead of
pooling [7]. In the context of tiny object detection, this feature reduction plays
an important role. Since our objects of interest are small, if we carelessly pick
the features to propagate we can easily lose the objects of interest through the
network and end up with a sub-optimal model. In theory, the goal is to have
as less pooling as possible. Also, it is desired to have this feature sampling step
in a way that information loss is minimized. There are multiple approaches for
sampling information through the network. Average pooling, max pooling and
convolutions with stride 2 are some of the options. In our experiments, we showed
that max pooling is the best choice of feature sampling for our task as it selects
the most discriminative feature in the network. Also, we showed that convolution
layers with stride of 2 are performing better compared to average pooling. The
reason is that convolution with stride 2 is very similar in its nature to weighted
averaging with the weights being learned in a data driven manner.

2.4 Proposed 3D Deep Network Architecture

Our network architecture consists of 36, 3D convolution layers, 4 max-pooling
layers and a sigmoid activation function at the end. 30 of convolution layers
form 5 blocks with dense connections and without pooling, which enhance low-
level information along with high-level information, and the remainder form the
transition layers. The details of our architecture can be seen in Fig. 2. The input
to our network is 512× 512× 8 and the output is a 16× 16× 8 probability map.
Each cell in the output corresponds to a cell of the original image divided by a
16 × 16 × 8 grid and decides whether there is a nodule in that cell or not.

Densely Connected Convolution Blocks: As stated, our network consists
of 5 densely connected blocks, each block containing 6 convolution layers with
an output channel of g, which is the growth rate of that block. Inside the blocks,
each layer receives all the preceding layers’ feature maps as inputs. Figure 2 (top
right) illustrates the layout of a typical dense block. Dense connections help the
flow of information inside the network. Assume x0 is the input volume to the
block and xi is the output feature map of layer i inside the block. Each layer
is a non-linear function Fi, which in our case is a composition of convolution,
batch normalization (BN) and rectifier linear unit (ReLU). With dense connec-
tions, each layer receives a concatenation of all previous layers’ feature maps as
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Fig. 2. Input to the network is a 512 × 512 × 8 volume and output is a 16 × 16 × 8
probability map representing likelihood of nodule presence. Our network has 5 dense
blocks each having 6 conv. layers. The growth rates of blocks 1 to 5 is 16, 16, 16, 32, 64
respectively. The network has 4 transition layers and 4 max-pooling layers. The last
block is followed by a convolution layer with kernel size 1 × 1 × 1 and output channel
of 1 and a sigmoid activation function.

input xi = Fi([x0, x1, ..., xi−1]), where xi is the output feature map from layer i
and [x0, x1, ..., xi−1] is the channel-wise concatenation of previous layers’ feature
maps.

Growth Rate (GR): is the number of feature maps that each layer Fi produces
in the block. This number is fixed for each block but it can change from one block
to the other. Assume the number of channels in the input layer of a block is c0
and the block has i convolution layers with a growth rate of g. Then the output
of the block will have c0 + (i− 1)g channels.

Transition Layers: as can be seen in the above formulations, the number of
feature maps inside each dense block increases dramatically. Transition layers are
1×1×1 convolution layers with 4×g output channels, where g is the growth rate
of previous block. Using a convolution with kernel size of 1×1×1 compresses the
information channel-wise and reduces the total number of channels throughout
the network.

Training the Network: The created ground truths for training our network
are 3D volumes with size 16 × 16 × 8. Each element in this volume corresponds
to a cell in the input image and has label 1 if a nodule exists in that cell and
0 otherwise. The design of our network allows for an end-to-end training. We
model detection as a cell wise classification of input which is done in one feed
forward path of the network in one shot. This formulation detects all the nodules
in the given volume simultaneously. The loss function for training our network
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is weighted cross-entropy defined as:

L(Y (n), f(X(n)) =
kn∑

i=1

−yi log(f(xi)), (1)

where Y s are the labels and Xs are the inputs.

3 Experiments and Results

Data and Evaluation: To evaluate detection performance of S4ND, we used
Lung Nodule Analysis (LUNA16) Challenge dataset (consisting of a total of
888 chest CT scans, slice thickness <2.5 mm, with ground truth nodule loca-
tions). For the training, we performed a simple data augmentation by shift-
ing the images in 4 directions by 32 pixels. We sampled the 3D volumes for
training so that nodules appear in random locations to avoid bias toward loca-
tion of nodules. We performed 10-fold cross validation to evaluate our method
by following the LUNA challenge guidelines. Free-Response Receiver Operating
Characteristic (FROC) analysis has been conducted to calculate sensitivity and
specificity [6]. Suggested by the challenge organizers, sensitivity at 7 FP/scan
rates (i.e. 0.125, 0.25, 0.5, 1, 2, 4, 8) was computed. The overall score of system
(Competition Performance Metric-CPM) was defined as the average sensitivity
for these 7 FP/scan rates.

Building Blocks of S4ND and Comparisons: This subsection explains how
we build the proposed S4ND network and provides a detailed comparison with
several baseline approaches. We compared performance of S4ND with state-of-
the-art algorithms, including SSD (single-shot multi-box object detection) [7],
known to be very effective for object detection in natural scenes. We show that
SSD suffers from low performance in lung nodule detection, even though trained
from scratch on LUNA dataset. A high degree of scale bias and known difficulties
of the lung nodules detection (texture, shape, etc.) in CT data can be considered
as potential reasons. To address this poor performance, we propose to replace
the convolution layers with dense blocks to improve the information flow in the
network. Further, we experimentally tested the effects of various down sampling
techniques. Table 1 shows the results of different network architectures along with
the number of parameters based on these combinations. We implemented the
SSD based architecture with 3 different pooling strategies: (1) average pooling
(2D Dense Avepool), (2) replacing pooling layers with convolution layers with
kernel size 3×3 and stride 2 (2D Dense Nopool) and (3) max pooling (2D Dense
Maxpool). Our experiments show that max pooling is the best choice of feature
sampling for tiny object detection as it selects the most discriminating feature
in each step. 2D Dense Nopool outperforms the normal average pooling (2D
Dense Avepool) as it is in concept a learnable averaging over 3×3 regions of our
network, based on the way we defined kernel size and stride.
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3D Networks, Growth Rate (GR), and Comparisons: We implemented
S4ND in a completely 3D manner. Growth rate for all the blocks inside the net-
work was initially fixed to 16 (3D Dense). However, we observed that increasing
the growth rate in the last 2 blocks of our network, where the computational
expense is lowest, (from 16 to 32 and 64, respectively) improved the perfor-
mance of detection (3D Increasing GR in Table 1). Also, having deeper blocks,
even with a fixed growth rate of 16 for all the blocks, help the information flow
in the network and improved the results further (3D Deeper Blocks in Table 1).
The final proposed method benefits from both deeper blocks and increasing
growth rate in its last two blocks. Figure 3 (left) shows the FROC comparison
of proposed method with the baselines. The 10-fold cross validation results were
compared with the current state of the art lung nodule detection method (3D
DCNN which is the best published results on LUNA dataset) [1]. Our proposed
method outperformed the best available results both in sensitivity and FROC
score, while only using as less as a third of its parameters, and without the need
for multi-stage refinements.

Table 1. Comparison of different models with varying conditions.

Model Sensitivity% Num of parameters CPM

Randomly selected 1-fold 2D SSD 77.8% 59,790,787 0.649

2D Dense Avepool 84.8% 67,525,635 0.653

2D Dense Nopool 86.4% 70,661,955 0.658

2D Dense Maxpool 87.5% 67,525,635 0.672

3D Dense 93.7% 694,467 0.882

3D Increasing GR 95.1% 2,429,827 0.890

3D Deeper Blocks 94.2% 1,234,179 0.913

Proposed (S4ND) 97.2% 4,572,995 0.931

10-fold 3D DCNN [1] 94.6% 11,720,032 0.891

Proposed (S4ND) 95.2% 4,572,995 0.897

Major Findings: (1) We obtained 0.897 FROC rate in 10-fold cross valida-
tion, and consistently outperformed the state of the art methods as well as other
alternatives. (2) SSD (the state of the art for object detection in natural images)
resulted in the lowest accuracy in all experiments. Proposed S4ND, on the other
hand, showed that single scale single shot algorithm performs better and more
suited to tiny object detection problem. (3) The proposed method achieved bet-
ter sensitivity, specificity, and CPM in single fold and 10-fold throughout exper-
iments where S4ND used less than the half parameters of 3D DCNN (current
state of the art in lung nodule detection). (4) A careful organization of the
architecture helps avoiding computationally heavy processing. We have shown
that maxpooling is the best choice of feature selection throughout the network
amongst current available methods. (5) Similarly, dense and deeper connections
improve the detection rates through better information flow through layers. It
should be noted that the runtime of our algorithm for the whole scan, on the
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test phase, varies from 11 secs to 27 secs based on the number of slices in the
scan on a single NVIDIA TITAN Xp GPU workstation with RAM of 64 GBs.

Fig. 3. Comparison of base line as well as comparison with the state of the art. Numbers
in front of each method in the legend show Competition Performance Metric (CPM).

4 Conclusion

This paper introduces a single-shot single-scale fast lung nodule detection algo-
rithm without the need for additional FP removal and user guidance for refine-
ment of detection process. Our proposed deep network structure is fully 3D and
densely connected. We also critically analyzed the role of densely connected
layers as well as maxpooling, average pooling and fully convolutional down
sampling in detection process. We present a fundamental solution to address
the major challenges of current region proposal based lung nodule detection
methods: candidate detection and feature resampling stages. We experimentally
validate the proposed network’s performance both in terms of accuracy (high
sensitivity/specificity) and efficiency (less number of parameters and speed) on
publicly available LUNA data set, with extensive comparison with the natural
object detector networks as well as the state of the art lung nodule detection
methods. A promising future direction will be to combine diagnosis stage with
the detection.
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