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Abstract. Data availability plays a critical role for the performance
of deep learning systems. This challenge is especially acute within the
medical image domain, particularly when pathologies are involved, due
to two factors: (1) limited number of cases, and (2) large variations in
location, scale, and appearance. In this work, we investigate whether aug-
menting a dataset with artificially generated lung nodules can improve
the robustness of the progressive holistically nested network (P-HNN)
model for pathological lung segmentation of CT scans. To achieve this
goal, we develop a 3D generative adversarial network (GAN) that effec-
tively learns lung nodule property distributions in 3D space. In order to
embed the nodules within their background context, we condition the
GAN based on a volume of interest whose central part containing the
nodule has been erased. To further improve realism and blending with
the background, we propose a novel multi-mask reconstruction loss. We
train our method on over 1000 nodules from the LIDC dataset. Quali-
tative results demonstrate the effectiveness of our method compared to
the state-of-art. We then use our GAN to generate simulated training
images where nodules lie on the lung border, which are cases where the
published P-HNN model struggles. Qualitative and quantitative results
demonstrate that armed with these simulated images, the P-HNN model
learns to better segment lung regions under these challenging situations.
As a result, our system provides a promising means to help overcome the
data paucity that commonly afflicts medical imaging.
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1 Introduction

Deep learning has achieved significant recent successes. However, large amounts
of training samples, which sufficiently cover the population diversity, are often
necessary to produce high quality results. Unfortunately, data availability in the
medical image domain, especially when pathologies are involved, is quite limited
due to several reasons: significant image acquisition costs, protections on sen-
sitive patient information, limited numbers of disease cases, difficulties in data
labeling, and large variations in locations, scales, and appearances. Although
efforts have been made towards constructing large medical image datasets,
options are limited beyond using simple automatic methods [8], huge amounts
of radiologist labor [1], or mining from radiologist reports [14]. Thus, it is still an
open question on how to generate effective and sufficient medical data samples
with limited or no expert-intervention.

One enticing alternative is to generate synthetic training data. However, his-
torically synthetic data is less desirable due to shortcomings in realistically sim-
ulating true cases. Yet, the advent of generative adversarial networks (GANs) [4]
has made game-changing strides in simulating real images and data. This ability
has been further expanded with developments on fully convolutional [13] and
conditional [10] GANs. In particular, Isola et al. extend the conditional GAN
(CGAN) concept to predict pixels from known pixels [6]. Within medical imag-
ing, Nie et al. use a GAN to simulate CT slices from MRI data [11], whereas
Wolterink et al. introduce a bi-directional CT/MRI generator [15]. For lung nod-
ules, Chuquicusma et al. train a simple GAN to generate simulated images from
random noise vectors, but do not condition based on surrounding context [2].

Fig. 1. Lung nodule simulation using the 3D CGAN. (a) A VOI centered at a lung
nodule; (b) 2D axial view of (a); (c) same as (b), but with central sphere region erased;
(d-e) simulated lung nodule using a plain L1 reconstruction loss and the 3D CGAN
with multi-mask L1 loss coupled with adversarial loss, respectively.

In this work, we explore using CGAN to augment training data for spe-
cific tasks. For this work, we focus on pathological lung segmentation, where
the recent progressive holistically nested network (P-HNN) has demonstrated
state of the art results [5]. However, P-HNN can struggle when there are rela-
tively large (e.g., >5 mm) peripheral nodules touching the lung boundary. This
is mainly because these types of nodule are not common in Harrison et al.’s [5]
training set. To improve P-HNN’s robustness, we generate synthetic 3D lung
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nodules of different sizes and appearances, at multiple locations, that naturally
blend with surrounding tissues (see Fig. 1 for an illustration). We develop a 3D
CGAN model that learns nodule shape and appearance distributions directly in
3D space. For the generator, we use a U-Net-like [3] structure, where the input
to our CGAN is a volume of interest (VOI) cropped from the original CT image
with the central part, containing the nodule, erased (Fig. 1(c)). We note that fill-
ing in this region with a realistic nodule faces challenges different than generating
a random 2D nodule image from scratch [2]. Our CGAN must generate realistic
and natural 3D nodules conditioned upon and consistent with the surrounding
tissue information. To produce high quality nodule images and ensure their nat-
ural blending with surrounding lung tissues, we propose a specific multi-mask
reconstruction loss that complements the adversarial loss.

The main contributions of this work are: (1) we formulate lung nodule gen-
eration using a 3D GAN conditioned on surrounding lung tissues; (2) we design
a new multi-mask reconstruction loss to generate high quality realistic nodules
alleviating boundary discontinuity artifacts; (3) we provide a feasible way to
help overcome difficulties in obtaining data for “edge cases” in medical images;
and (4) we demonstrate that GAN-synthetized data can improve training of a
discriminative model, in this case for segmenting pathological lungs using P-
HNN [5].

2 Methods

Figure 2 depicts an overview of our method. Below, we outline the CGAN formu-
lation, architecture, and training strategy used to generate realistic lung nodules.

Fig. 2. 3D CGAN architecture for lung nodule generation. The input is the original
CT VOI, y, containing a real nodule and the same VOI, x, with the central region
erased. Channel numbers are placed next to each feature map.
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2.1 CGAN Formulation

In their original formulation, GANs [4] are generative models that learn a map-
ping from a random noise vector z to an output image y. The generator, G, tries
to produce outputs that fool a binary classifier discriminator D, which aims to
distinguish real data from generated “fake” outputs. In our work, the goal is to
generate synthetic 3D lung nodules of different sizes, with various appearances,
at multiple locations, and have them naturally blend with surrounding lung tis-
sues. For this purpose, we use a CGAN conditioned on the image x, which is
a 3D CT VOI cropped from a specific lung location. Importantly, as shown in
Fig. 1(c), we erase the central region containing the nodule. The advantage of
this conditional setting is that the generator not only learns the distribution of
nodule properties from its surrounding context, but it also forces the generated
nodules to naturally fuse with the background context. While it is possible to also
condition on the random vector z, we found it hampered performance. Instead,
like Isola et al. [6], we use dropout to inject randomness into the generator.

The adversarial loss for CGANs can then be expressed as

�LCGAN (G,D) = Ex,y[log D(x, y)] + Ex[log (1 − D(x,G(x)))], (1)

where y is the original VOI and G tries to minimize this objective against an
adversarial discriminator, D, that tries to maximize it. Like others [6,12], we
also observe that an additional reconstruction loss is beneficial, as it provides a
means to learn the latent representation from surrounding context to recover the
missing region. However, reconstruction losses tend to produce blurred results
because it tends to average together multiple modes in the data distribution [6].
Therefore, we combine the reconstruction and adversarial loss together, making
the former responsible for capturing the overall structure of the missing region
while the latter learns to pick specific data modes based on the context. We use
the L1 loss, since the L2 loss performed poorly in our experiments.

Since the generator is meant to learn the distribution of nodule appearances
in the erased region, it is intuitive to apply L1 loss only to this region. However,
completely ignoring surrounding regions during generator’s training can produce
discontinuities between generated nodules and the background. Thus, to increase
coherence we use a new multi-mask L1 loss. Formally, let M be the binary mask
where the erased region is filled with 1’s. Let N be a dilated version of M . Then,
we assign a higher L1 loss weight to voxels where N − M is equal to one:

�LL1(G) = Ex,y[M � ‖y − G(x)‖1] + αEx,y[(N − M) � ‖y − G(x)‖1], (2)

where � is the element-wise multiplication operation and α >= 1 is a weight
factor. We find that a dilation of 3 to 6 voxels generally works well. By adding
the specific multi-mask L1 loss, our final CGAN objective is

G∗ = arg min
G

max
D

�LCGAN (G,D) + λ�LL1(G), (3)

where α and λ are determined experimentally. We empirically find α = 5 and
λ = 100 works well in our experiments.
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2.2 3D CGAN Architecture

Figure 2 depicts our architecture, which builds off of Isola et al.’s 2D work [6],
but extends it to 3D images. More specifically, the generator consists of an
encoding path with 5 convolutional layers and a decoding path with another 5 de-
convolutional layers where short-cut connections are added in a similar fashion
to U-net [3]. The encoding path takes an input VOI x with missing regions and
produces a latent feature representation, and the decoding path takes this feature
representation and produces the erased nodule content. We find that without
shortcut connections, our CGAN models do not converge, suggesting that they
are important for information flow across the network and for handling fine-scale
3D structures, confirmed by others [7]. To inject randomness, we apply dropout
on the first two convolutional layers in the decoding path.

The discriminator also contains an encoding path with 5 convolutional lay-
ers. We also follow the design principles of Radford et al. [13] to increase train-
ing stability, which includes strided convolutions instead of pooling operations,
LeakyReLu’s in the encoding path of G and D, and a Tanh activation for the
last output layer of G.

2.3 CGAN Optimization

We train the CGAN model end-to-end. To optimize our networks, we use the
standard GAN training approach [4], which alternates between optimizing G
and D, as we found this to be the most stable training regimen. As suggested
by Goodfellow et al. [4], we train G to maximize log D(x,G(x)) rather than
minimize log(1 − D(x,G(x))). Training employs the Adam optimizer [9] with a
learning rate 0.0001 and momentum parameters β1 = 0.5 and β2 = 0.999 for
both the generator and discriminator.

3 Experiments and Results

We first validate our CGAN using the LIDC dataset [1]. Then, using artificially
generated nodules, we test if they can help fine-tune the state-of-the-art P-HNN
pathological lung segmentation method [5].

3.1 3D CGAN Performance

The LIDC dataset contains 1018 chest CT scans of patients with observed lung
nodules, totaling roughly 2000 nodules. Out of these, we set aside 22 patients
and their 34 accompanying nodules as a test set. For each nodule, there can be
multiple radiologist readers, and we use the union of the masks for such cases.
True nodule images, y, are generated by cropping cubic VOIs centered at each
nodule with 3 random scales between 2 and 2.5 times larger than the maximum
dimension of the nodule mask. All VOIs are then resampled to a fixed size of
64 × 64 × 64. Conditional images, x, are derived by erasing the pixels within a
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sphere of diameter 32 centered at the VOI. We exclude nodules whose diameter is
less than 5 mm, since small nodules provide very limited contextual information
after resampling and our goal is to generate relatively large nodules. This results
in roughly 4300 training sample pairs. We train the cGAN for 12 epochs.

We tested against three variants of our method: (1) only using an all-image
L1 loss; (2) using both the adversarial and all-image L1 loss. This is identical
to Isola et al.’s approach [6], except extended to 3D; (3) using the same com-
bined objective in (3), but not using the multi-mask version, i.e., only using
the first term of equation (2). As reconstruction quality hinges on subjective
assessment [6], we visually examine nodule generation on our test set. Selected
examples are shown in Fig. 3. As can be seen, our proposed CGAN produces
realistic nodules of high quality with various shapes and appearances that natu-
rally blend with surrounding tissues, such as vessels, soft tissue, and parenchyma.
In contrast, when only using the reconstruction L1 loss, results are considerably
blurred with very limited variations in shape and appearance. Results from Isola
et al.’s method [6] improve upon the L1 only loss; however, it has obvious incon-
sistencies/misalignments with the surrounding tissues and undesired sampling
artifacts that appear inside the nodules. It is possible that by forcing the gener-
ator to reconstruct the entire image, it distracts the generator from learning the
nodule appearance distribution. Finally, when only performing the L1 loss on
the erased region, the artifacts seen in Isola et al.’s are not exhibited; however,
there are stronger border artifacts between the M region and the rest of the
VOI. In contrast, by incorporating a multi-mask loss, our method can produce
nodules with realistic interiors and without such border artifacts.

Fig. 3. Examples results: (a) original images; (b) input after central region erased; (c)
only L1 loss, applied to the entire image; (d) Isola et al.’s method [6]; (e) CGAN with
L1 loss, applied only to the erased region; (f) our CGAN with multi-mask L1 loss.
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3.2 Improving Pathological Lung Segmentation

With the CGAN trained, we test whether our CGAN benefits pathological lung
segmentation. In particular, the P-HNN model shared by Harrison et al. [5] can
struggle when peripheral nodules touch the lung boundary, as these were not well
represented in their training set. Prior to any performed experiments, we selected
34 images from the LIDC dataset exhibiting such peripheral nodules. Then, we
randomly chose 42 LIDC subjects from relatively healthy subjects with no large
nodules. For each of these, we pick 30 random VOI locations, centering within
(8,20)mm to the lung boundary with random size ranging (32, 80)mm. VOIs are
resampled to 64 × 64 × 64 voxels and simulated lung nodules are generated in
each VOI, using the same process as in Sect. 3.1, except the trained CGAN is
only used for inference. The resulting VOIs are resampled back to their original
resolution and pasted back to the original LIDC images, and then the axial slices
containing the simulated nodules are used as training data (∼10000 slices) to
fine-tune the P-HNN model for 4–5 epochs. For comparison, we also fine-tune
P-HNN using images generated by the L1-only loss and also Isola et al.’s CGAN.

Fig. 4. Lung segmentation results on LIDC patients with peripheral lung nodules. All
metrics are measured on a size 64 pixel VOI centered on the nodule.

Fig. 5. Examples P-HNN lung segmentations. (a) ground truth; (b) original model;
(c-e) fine-tuned with L1 loss only, Isola et al. [6], and proposed CGAN, respectively.
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Figure 4 depicts quantitative results. First, as the chart demonstrates, fine-
tuning using all CGAN variants improves P-HNN’s performance on peripheral
lung nodules. This confirms the value in using simulated data to augment train-
ing datasets. Moreover, the quality of nodules is also important, since the results
using nodules generated by only an all-image L1 loss have the least improvement.
Importantly, out of all alternatives, our proposed CGAN produces the greatest
improvements in Dice scores, Hausdorff distances and average surface distances.
For instance, our proposed CGAN allows P-HNN’s mean Dice scores to improve
from 0.964 to 0.989, and reduces the Hausdorff and average surface distance by
2.4 mm and 1.2 mm, respectively. In particular, worse case performance is also
much better for our proposed system, showing it can help P-HNN deal with
edge cases. In terms of visual quality, Fig. 5 depicts two examples. As these
examples demonstrate, our proposed CGAN allows P-HNN to produce consider-
able improvements in segmentation mask quality at peripheral nodules, allowing
it to overcome an important limitation.

4 Conclusion

We use a 3D CGAN, coupled with a novel multi-mask loss, to effectively gener-
ate CT-realistic high-quality lung nodules conditioned on a VOI with an erased
central region. Our new multi-mask L1 loss ensures a natural blending of the gen-
erated nodules with the surrounding lung tissues. Tests demonstrate the supe-
riority of our approach over three competitor CGANs on the LIDC dataset,
including Isola et al.’s state-of-the-art method [6]. We further use our proposed
CGAN to generate a fine-tuning dataset for the published P-HNN model [5],
which can struggle when encountering lung nodules adjoining the lung bound-
ary. Armed with our CGAN images, P-HNN is much better able to capture the
true lung boundaries compared to both its original state and when it is fine-tuned
using the other CGAN variants. As such, our CGAN approach can provide an
effective and generic means to help overcome the dataset bottleneck commonly
encountered within medical imaging.
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