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Abstract. We present a focal liver lesion detection model leveraged
by custom-designed multi-phase computed tomography (CT) volumes,
which reflects real-world clinical lesion detection practice using a Sin-
gle Shot MultiBox Detector (SSD). We show that grouped convolutions
effectively harness richer information of the multi-phase data for the
object detection model, while a naive application of SSD suffers from a
generalization gap. We trained and evaluated the modified SSD model
and recently proposed variants with our CT dataset of 64 subjects by
five-fold cross validation. Our model achieved a 53.3% average preci-
sion score and ran in under three seconds per volume, outperforming
the original model and state-of-the-art variants. Results show that the
one-stage object detection model is a practical solution, which runs in
near real-time and can learn an unbiased feature representation from
a large-volume real-world detection dataset, which requires less tedious
and time consuming construction of the weak phase-level bounding box
labels.
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1 Introduction

Liver cancer is the sixth most common cancer in the world and the second most
common cause of cancer-related mortality with an estimated 746,000 deaths
worldwide per year [1]. Of all primary liver cancers, hepatocellular carcinoma
(HCC) represents approximately 80% and most HCCs develop in patients with
chronic liver disease [2]. Furthermore, early diagnosis and treatment of HCC is
known to yield better prognosis [3]. Therefore, it is of critical importance to be
able to detect focal liver lesions in patients with chronic liver disease.
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Among the various imaging modalities, computed tomography (CT) is the
most widely utilized tool for HCC surveillance owing to its high diagnostic per-
formance and excellent availability. A dynamic CT protocol of the liver consists
of multiple phases [21], including precontrast, arterial, portal, and delayed phases
to aid in the detection of the HCCs that have different hemodynamics from sur-
rounding normal liver parenchyma. However, as a result, dynamic CT of the
liver produces a large number of images, which require much time and effort
for radiologists to interpret. In addition, early stage HCCs tend to be indistinct
or small and sometimes it is difficult to distinguish them from adjacent hepatic
vasculatures or benign lesions, such as arterioportal shunts, hemangioma, etc.
Hence, diagnostic performance for early stage HCCs using CT is low compared
to large, overt HCCs [4]. If focal liver lesions could be automatically pre-detected
from CT images, radiologists would be able to avoid the laborious work of read-
ing all images and focus only on the characterization of the focal liver lesions.
Consequently, interpretation of liver CT images would be more efficient and
expectedly also more accurate owing to focused reading.

Most publicly available CT datasets contain only the portal phase with per-
pixel segmentation labeling [19,20]. On the contrary, images of multiple phases
are required to detect and diagnose the liver lesions. Representatively, HCC
warrants diagnostic imaging characteristics of arterial enhancement and portal
or delayed washout as stated by major guidelines [5]. Thus, the representational
power of deep learning-based models [6–8] is bounded by the data distribution
itself. For example, specific variants of the lesion are difficult to see from the
portal phase (Fig. 1). Therefore, a variety of hand-engineered data pre-processing
techniques are required for deep learning with medical images.

Furthermore, from a clinical perspective, it is of practical value to detect
lesion candidates by flagging them in real-time with a bounding box region of
interest, which supports focused reading rather than pixel-wise segmentation,
[6,8] which consumes a considerable amount of compute time. Considering the
current drawbacks of the public datasets, we constructed a multi-phase detection
CT dataset, which better reflects a real-world scenario of liver lesion diagnosis.
While the segmentation dataset is more information-dense than the detection
dataset, per-pixel labeling is less practical in terms of the scalability of the data,
especially for medical images, which require skilled experts for clinically valid
labelling. We show that the performance of our liver lesions detection model
improves further when using multi-phase CT data.

We design an optimized version of the Single Shot MultiBox Detector (SSD)
[10], a state-of-the-art deep learning-based object detection model. Our model
incorporates grouped convolutions [12] for the multi-phase feature map. Our
model successfully leverages richer information of the multi-phase CT data, while
a naive application of the original model suffers from overfitting, which is where
the model overly fits the training data and performs poorly on unobserved data.
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2 Multi-phase Data

We constructed a 64 subject axial CT dataset, which contains four phases, for
liver lesion detection. The dataset is approved by the international review board
of Seoul National University Hospital. For image slices that contained lesions, we
labeled such lesions in all phases with a rectangular bounding box. All the labels
were determined by two expert radiologists. To enable the model to recognize
information from the z-axis, we stacked three consecutive slices for each phase
to create an input for the model. This resulted in a total of 619 data points,
each of them having four phases aligned with the z-axis, and each of the phases
having 3 × 512 × 512 image slices of the axial CT scan.

Fig. 1. Examples of the multi-phase CT dataset. Top: Lesions are visible from all
phases. Bottom: Specific variants of lesions are visible only from specific phases. Note
that the lesions are barely visible from the portal phase.

Since the volume of our dataset is much lower than the natural image
datasets, the model unavoidably suffers more from overfitting, which is largely
due to weakly-labeled ground truth bounding boxes. We labeled the lesions
phase-wise, rather than slice-wise; for all slices that contain lesions in each phase,
the coordinates of the bounding box are the same. While this method renders
less burden on large-volume dataset construction, we get a skewed distribution
of the ground truth, which hinders generalization of the trained model. To com-
pensate for this limitation, we introduced a data augmentation for the ground
truth, where we injected a uniform random noise to the bounding boxes to com-
bat overfitting of the model while preserving the clinical validity of the labels.
Formally, for each bounding box y = {xmin, ymin, xmax, ymax}, we apply the
following augmentation:

ynoise = y � z, zi ∼ U(1 − α, 1 + α), (1)

where � is an element-wise multiplication, and α > 0 is set to a small value in
order to preserve label information. We sample the noise on-the-fly while training
the model.
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We followed a contrast-enhancement pre-processing pipeline for the CT data
in [6]. We excluded the pixels outside the Hounsfield Unit (HU) range [−100,
400] and normalized them to [0, 1] for the model to concentrate on the liver and
exclude other organs. Since our dataset contains CT scans from several different
vendors, we manually matched the HU bias of the vendors before pre-processing.

3 Grouped Single Shot MultiBox Detector

Here, we describe the SSD model and our modifications for the liver lesions
detection task. In contrast to two-stage models [13], one-stage models [14], such
as SSD, detect the object category and bounding box directly from the feature
maps. One-stage models focus on the speed-accuracy trade-off [9], where they
aim to achieve a similar performance to two-stage models but with faster training
and inference.

Fig. 2. Schematic diagram of grouped Single Shot MultiBox Detector. Solid lines of the
convolutional feature map at the bottom indicate grouped convolutions. Digits next to
upper arrows from the feature maps indicate the number of default boxes for each grid
of the feature map. Intermediate layers and batch normalization are omitted for visual
clarity.

SSD is a one-stage model, which enables object detection at any scale by uti-
lizing multi-scale convolutional feature maps (Fig. 2). SSD can use any arbitrary
convolutional neural networks (CNNs) as base networks. The model attaches
bounding box regression and object classification heads to several feature maps
of the base networks. We use the modified VGG16 [11] architecture as in the orig-
inal model implementation to ensure a practical computational cost for training
and inference. The loss term is a sum of the confidence loss from the classification
head and the localization loss from the box regression head:

L(x, c, l, g) =
1
N

(Lconf (x, c) + Lloc(x, l, g)), (2)

where N is the number of matched (pre-defined) default boxes, xp
ij = {1, 0} is

an indicator for matching the i-th default box to the j-th ground truth box of
category p, Lconf is the softmax loss over class confidences c and Lloc is the
smooth L1 loss between the predicted box l and the ground truth box g.
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Grouped Convolutions. Our custom liver lesions detection dataset consists
of four phases, each of them having three continuous slices of image per data
point, which corresponds to 12 “channels” for each input. We could apply the
model naively by increasing the input channel of the first convolutional layer to
12. However, this renders the optimization of the model ill-posed, since the con-
volution filters need to learn a generalized feature representation from separate
data distributions. This also runs the risk of exploiting a specific phase of the
input, and not fully utilizing the rich information from the multi-phase input.
Naive application of the model causes severe overfitting, which means the model
fails to generalize to the unobserved validation dataset.

To this end, we designed the model to incorporate grouped convolutions.
For each convolutional layer of the base networks, we applied convolution with
separate filters for each phase by splitting the original filters, and concatenated
the outputs to construct the feature map. Before sending the feature map to the
heads, we applied additional 1× 1 convolutions. This induces parts of the model
to have separate roles, where the base networks learn to produce the best feature
representation for each phase of the input, while the 1× 1 convolutions act as a
channel selector by fusing the grouped feature map [22,23] for robust detection.

Fig. 3. Performance comparison from the five-fold cross validation set. Left: Localiza-
tion loss curves. Middle: Confidence loss curves. Right: Average precision scores. All
models except GSSD300-opt used 1:1 OHNM (Table 1).

4 Experiments

We trained the modified SSD models with our custom liver lesion detection
dataset. For unbiased results, we employed five-fold cross validation. We applied
all on-the-fly data augmentation techniques that were used in the original SSD
implementation, but excluding hue and saturation randomization of the pho-
tometric distortion technique. We randomly cropped, mirrored, and scaled each
input image (from 0.5 to 1.5). We trained the model over 10,000 iterations with a
batch size of 16. We used a stochastic gradient descent optimizer with a learning
rate of 0.0005, a momentum of 0.9, and a weight decay of 0.0005. We scheduled
the learning rate adjustment with 1/10 scaling after 5,000 and 8,000 iterations
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for fine-tuning. We trained the models from scratch without pre-training, and
initialized them using the Xavier method. We applied a batch normalization
technique to the base networks for the grouped feature maps to have a nor-
malized distribution of activations. We set the uniform random noise α for the
ground truth in Eq. (1) to 0.01 for all experiments.

Fig. 4. Qualitative results from the validation set with a confidence threshold of 0.3.
Yellow: Ground truth box. Red: Model predictions. Portal images shown. Top: GSSD
accurately detects lesions, whereas the original model contains false positives or fails to
detect. Bottom: A case of continuous slices. GSSD successfully tracks the exact location
of lesions even with the given weak ground truth, whereas SSD completely fails.

The performance definitively improved when using the multi-phase data. For
comparison, the single-phase model received portal phase images copied four
times as inputs. The model trained with only the portal phase data obviously
underfitted (Fig. 3), since several variants of the ground truth lesions are barely
visible from the portal CT images.

By significantly suppressing overfitting of the class confidence layers (Fig. 3),
our grouped SSD (GSSD) outperformed the original model as well as recently
proposed state-of-the-art variants (Table 1) [17,18]. Figure 4 demonstrates qual-
itative detection results. The best configuration achieved a 53.3% average pre-
cision (AP) score (Table 1). The model runs approximately 40 slices per second
and can go through an entire volume of 100 slices in under three seconds on an
NVIDIA Tesla P100 GPU. Note that the 1 × 1 convolutions play a key role as
channel selectors. GSSD failed to perform well without the module. Stacking the
1× 1 convolutions on top of the original model did not improve its performance,
which proved that the combination of grouped convolutions and the channel
selector module best harnesses the multi-phase data distribution.
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Table 1. Performance comparison of various configurations of SSD models. OHNM:
The positive:negative ratio of Online Hard Negative Mining (OHNM) [10]. 2xBase:
Whether the model uses 2x feature maps in the base networks. # 1× 1 Conv: The
number of layers for each feature map before sending to the heads. Best AP scores
after 5,000 iterations reported.

Model OHNM 2xBase # 1× 1 Conv AP

SSD300 [10] (Portal Only) 1:1 0.208

SSD300 (in Fig. 3) 1:1 0.444

SSD300 1:3 0.448

SSD300 1:1 1 0.408

SSD512 (in Fig. 3) 1:1 0.428

SSD512 1:3 0.433

FSSD300 [18] 1:1 0.432

Feature-fusedSSD300 [17] 1:1 0.437

GSSD300 1:1 0.445

GSSD300 1:1 2 0.459

GSSD300 1:1 � 2 0.468

GSSD300 1:1 � 1 0.529

GSSD300 1:3 � 1 0.499

GSSD300 (in Fig. 3) 1:1 1 0.487

GSSD300-opt (in Fig. 3) 1:3 1 0.533

5 Discussion and Conclusions

This study has shown that our optimized version of the SSD can successfully
learn an unbiased feature representation from a weakly-labeled multi-phase CT
dataset, which only requires phase-level ground truth bounding boxes. The sys-
tem can detect liver lesions in a volumetric CT scan in near real-time, which
provides practical merit for real-world clinical applications. The framework is
also flexible, which gives it strong potential for pushing the accuracy of the
model further by using more sophisticated CNNs as the base networks, such as
ResNet [15] and DenseNet [16].

We believe that the construction of large-scale detection datasets is a promis-
ing direction for fully leveraging the representational power of deep learning
models from both machine learning and clinical perspectives. In future work, we
plan to increase the size of the dataset to thousands of subjects, combined with
a malignancy score label for the ground truth box for an end-to-end malignancy
regression task.
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