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Abstract. Computer-aided diagnosis (CAD) systems are useful for assisting
radiologists with clinical diagnoses by classifying focal liver lesions (FLLs)
based on multi-phase computed tomography (CT) images. Although many
studies have conducted in the field, there still remain two challenges. First, the
temporal enhancement pattern is hard to represent effectively. Second, the local
and global information of lesions both are necessary for this task. In this paper,
we proposed a framework based on deep learning, called ResGL-BDLSTM,
which combines a residual deep neural network (ResNet) with global and local
pathways (ResGL Net) with a bi-directional long short-term memory (BD-
LSTM) model for the task of focal liver lesions classification in multi-phase CT
images. In addition, we proposed a novel loss function to train the proposed
framework. The loss function is composed of an inter-loss and intra-loss, which
can improve the robustness of the framework. The proposed framework out-
performs state-of-the-art approaches by achieving a 90.93% mean accuracy.
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1 Introduction

Liver cancer is the second most common cause of cancer-related deaths worldwide
among men, and the sixth among women [1]. Radiological examinations, such as
computed tomography (CT) images and magnetic resonance images (MRI) are the
primary methods of detecting liver tumors. Computer-aided diagnosis (CAD) systems
play an important role in the early and accurate detection and classification of FLLs.

Currently, multi-phase CT images, which are also known as dynamic CT images, are
widely used to detect, locate and diagnose focal liver lesions. Multi-phase CT scans are
generally divided into four phases (i.e. non-contrast phase, arterial phase, portal phase,
delay phase). Between the non-contrast phase and the delay phase, the vascularity and
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the contrast agent enhancement patterns of the liver masses can be assessed. We observe
that, when human experts diagnose the type of FLLs, they tend to zoom out the CT
images to figure out the detail of lesions [2], and they also need to look back or forward
in different phases. The observation interprets the importance of the combination of
local with global information and the temporal enhancement pattern.

Some published studies have reported on the characterization of FLLs using
multiphase images to capture the temporal information among phases. Roy et al. [3]
proposed a framework to extract spatiotemporal features from multiphase CT volumes
for the characterization of FLLs. In addition to conventional density features (the
normalized average intensity of a lesion) and texture features (the gray-level co-
occurrence matrix [GLCM]), temporal density and texture features (the intensity and
texture enhancement over the three enhancement phases compared with the non-
contrast phase), were employed. Compared with low-level features, the mid-level
features such as bag-of-visual-words (BoVW) and its variants have proven to be
considerably more effective for classifying FLLs [4–9]. In most of the BoVW-based
methods, the histograms in each phase are separately extracted and then they are
concatenated as a spatiotemporal feature [5, 8, 9] or the averaged histogram over
multiple phases is used to represent the multi-phase images [4]. They ignore the
temporal enhancement information and relationship among phases.

In recent years, the high-level feature representation of deep convolutional neural
networks (DCNN) has proven to be superior to hand-crafted low-level features and
mid-level features [10]. Deep learning techniques have also been applied to medical
image analysis and computer-aided detection and diagnosis. However, there have been
very few studies on the classification of focal liver lesions. Frid-Arar et al. [11] pro-
posed a multi-scale patch-based classification framework to detect focal liver lesions.
Yasaka et al. [12] proposed a convolutional neural network with three channels cor-
responding to three phases (NC, ART and DL) for the classification of liver tumors in
dynamic contrast-enhanced CT images. The method can extract high-level temporal
and spatial features, resulting in a higher classification accuracy compared with the
state-of-the-art methods. The limitation is that it lacks information on image pattern
enhancements.

In this paper, we propose a framework based on deep learning, called ResGL-BD-
LSTM, which combines a residual network (ResNet) with global and local pathways
(ResGLNet) [13] and a bi-directional long short-term memory (BD-LSTM) model for
the classification of focal liver lesion. The main contributions are summarized as
follows:

(1) We extract features from each single phase CT image via the ResGLNet. The input
of the ResGLNet is a pair (patch and ROI) that represent the local and global
information, respectively, to handle inter-class similarities.

(2) We extract an enhancement pattern, hidden in multi-phase CT images, via the BD-
LSTM block, to represent each patch. To the best of our knowledge, expressing
temporal features (enhancement patterns) among multiphase images using deep
learning has not been investigated previously.
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(3) We propose a new loss function to train our model, and provide a more robust and
accurate deep model. The loss function is composed of an inter-loss and intra-loss.
The inter-loss minimizes the inter-class variations and the intra-loss minimizes the
intra-class variations, updating the center value using a back-propagation process.

2 Methodology

A flowchart of the proposed framework is shown in Fig. 1. The ResGLNet block,
which extracts local and global information from each single phase, will be described
in detail in Sect. 2.1. The BD-LSTM block, which extracts the enhancement pattern,
will be described in detail in Sect. 2.2. The method combining the ResGLNet block
and BD-LSTM block will be described in Sect. 2.3. We will introduce the loss function
and training strategy of the framework in Sect. 2.4. In Sect. 2.5, we describe the
features extracted from the label map, and how we accomplish the lesion-based
classification.

2.1 ResGLNet

In this sub-section, we describe ResGLNet block, which was proposed in our previous
work [13]. The ResGLNet involves a local pathway and global pathway. Intuitively,
these extract local and global information, respectively. The employed ResGLNet is an
extension of the ResNet proposed by [10]. We utilize three ResGLNet blocks, which
each have the same architecture but do not share weights with each other, to extract the
information of the three respective phases. In each ResNet block, we used 19 convo-
lutional layers, one pooling layer (avg-pooling), and one fully connected layer. Each
convolution layer was followed by a rectified linear unit (ReLU) activation function
and a batch normalization layer.

Fig. 1. The flowchart of our framework
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Global Pathway. First, we apply a random walk-based interactive segmentation
algorithm [14] to segment healthy tissue and focal liver lesions. The segmented results
were checked by two experienced radiologists. The segmentation was performed for
each phase image separately. During a clinical CT study, the spatial placement of
tissues formed in multiple phases exhibits some aberration, owing to differences in a
patient’s body position, respiratory movements, and the heartbeat. Therefore, to obtain
a factual variation of the density over phases, a non-rigid registration technique in order
to localize a reference lesion in other phases [15]. Each segmented lesion image (i.e.,
2D slice image) was resized to 128� 128. The resized images were then used as input
for global pathway training and testing.

Local Pathway. Patches were extracted from ROIs. Each patch has a label, c 2
c0; c1; c2; c3f g where c0 represents a cyst, c1 represents an focal nodular hyperplasia

(FNH), c2 represents an hepatocellular carcinoma (HCC) and c3 represents an
hemangioma (HEM). Owing to the different lesions varying significantly in size,
extreme imbalances occur among the patch categories. To solve this problem, the pace
value is derived in Eq. (1):

pacei ¼ floor
ffiffiffiffiffiffiffiffi
wi�hi
�

q� �
; wi � hi [ �

1; wi � hi � �

(
ð1Þ

where i represents the i-th ROI; pacei is the pace of i-th ROI for extracting the patches,
wi and hi respectively represent the width and height of the i-th ROI, � represents a
threshold that can limit the number of patches, and the floor function represents
rounding-down. For the testing dataset, we still set the pace to 1. As in the global
pathway approach, we resized the patches to 64� 64.

2.2 BD-LSTM

A recurrent neural network (RNN) can maintain self-connected status acting as a
memory to remember previous information when it processes sequential data. Long-
short term memory (LSTM) is a class of RNN that can avoid the vanishing gradient
problem.

Bi-directional LSTM (BD-LSTM), which stacks two layers of LSTM, is an
extension of LSTM. The two layers of LSTM, which are illustrated in Fig. 1, work in
two opposite directions to extract useful information from sequential data. The
enhancement information carried in the two layers of LSTM is concatenated as the
output. One layer is in the z−-direction, and extracts the enhancement pattern from the
NC phase through the PV phase and the other is in the zþ -direction and extracts the
anti-enhancement pattern from the PV phase through the NC phase.
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2.3 Combining ResGLNet and BD-LSTM

The motivation of performing focal liver lesions classification based on multi-phases
CT images by combining ResGLNet and BD-LSTM is to employ multi-phases CT
images as sequential data. The ResGLNet extracts the information (i.e., intra-phase
information) based on a single phase. The BD-LSTM distills enhancement information
(i.e., inter-phase information) among three phases, and the length of sequential data is a
constant number (i.e., 3). The two blocks work in coordination, as follows.

The output of the three ResGLNet blocks, as a sequential data, constitutes the input
of the BD-LSTM. Furthermore, the output of the two layers LSTM (i.e., BD-LSTM),
representing patches, constitutes the input of the fully connected layer. The softmax
layer following the last fully connected layer produces output that gives the result of the
patch-based classification.

2.4 Training Strategy

Loss Function. Let N be the batch size and xt be the weights in the t-th (t = 1, 2, …
T) layer. We use W to denote the weights of the mainstream network (involving three

ResGLNet blocks and a BD-LSTM block). We used W
_

local andW
_

global to represent the
weights of the local and global pathways (involving three ResGLNet blocks, the same
below), respectively. Furthermore, p j xi;Wjð Þ represents the probability of the i-th

patch belonging to the j-th class. We define p j xi;W
_

global

���
� �

and p j xi;W
_

local

���
� �

similarly. The definitions of cross-entropy are as follows:

Llast ¼ 1
N

XN

i¼1

XK

c¼1

�p j xi;Wjð Þ � log p j xi;Wjð Þð Þ ð2Þ

Thus, we can obtain the definition of Llocal and Lglobal for the same reason. And the
definition of the inter-loss that as follows:

Linter ¼ 1
2
� Llast þ 1

4
� Llocal þ 1

4
� Lglobal ð3Þ

The definition of the intra-loss (i.e. center loss [16]) is as follows:

Lintra ¼ 1
2

XN

i¼1

fi � cyi
�� ��2 ð4Þ

Here f i is the representation feature of the i-th patch and cyi denotes the yi-th class
center of features. In the course of training cyi should be updated using the process of
back-propagation. To accelerate our training, we conduct the update operation based on
each batch, instead of basing it on the entire training set. Note that, in this case,

670 D. Liang et al.



some of the centers may not change. The method employed to update the centers is
described as follows:

cj ¼ cj � Dcj ¼ cj � @L

@cj

¼ cj � a �
PN

i¼1 d yi ¼¼ jð Þ f i � cj
� �

1þ PN
i¼1 d yi ¼¼ jð Þ

ð5Þ

Here d yi ¼¼ jð Þ = 1 if the yi ¼¼ j holds, and d yi ¼¼ jð Þ = 0 otherwise. Further-
more, a can restrict the learning rate of the centers, where the range of a is (0, 1).

Finally, we adopt a joint loss that combines the intra-loss and inter-loss to train the
frameworks. The formulation of the optimized loss is given in Eq. 6.

L ¼ Linter þ kLintra ð6Þ

Training Process. Our framework is split into two phases. The first is the training
phase, and the second is the testing phase. During training, we first trained the part of
our framework that involves the deep learning components and then aggregated the
label maps. The effectiveness of the patches from the validation dataset determines
when the training stop. We aggregated the label maps belonging to the training and
validation datasets after the model was trained. Next, we used the training and vali-
dation label maps as input to the support vector machine (SVM) classifier. Then, we
also determined the parameters of the SVM (classifier of lesions) using the effective-
ness of label map of the validation dataset.

2.5 Post-processing of Label Map and Classification of Lesions

After training, we aggregated the label map of each lesion. Then, we extracted features
from the label map. The features are as follows:

featurei ¼ bi0; bi1; bi2; bi3f g ð7Þ

Here featurei represents the feature vector of i-th label map, and bij, is derived in
Eq. (8), denotes the proportion of pixels belonging to the j-th category of in the i-th
label map. Then we use the SVM to achieve lesion-based classification.

bij ¼
the number of pixels belong to jth category

the total pixels in ith label map
ð8Þ
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3 Experiments

3.1 Data and Implementation

A total of 480 CT liver slice images were used, containing four types of lesions
confirmed by pathologists, (i.e., Cyst, HEM, FNH, and HCC). The distribution of our
dataset is shown in Table 1. The CT images in our dataset are abdominal CT scans
taken from 2015 through 2017. The CT scans were acquired with a slice collimation of
5–7 mm, a matrix of 512� 512 pixels, and an in-plane resolution of 0.57 − 0.89. In
our experiment, we randomly split our dataset into a training dataset, a validation
dataset, and a testing dataset. In order to eliminate the effect of randomness, we conduct
the partition operation twice, and form two groups of dataset.

Our framework was implemented using the Tensorflow library. We initialized the
parameters via the Gaussian distribution. We used a momentum optimizer to update
our parameters by setting the learning rate initialized as 0.01 and the momentum
coefficient to 0.9. We set the batch size as 100. The parameters for our algorithm were
k ¼ 0:1, a ¼ 0:2, � ¼ 128, and patch size = 7.

3.2 Results

In order to validate the effectiveness of or proposed methods. We compared our results
with the state-of-art methods with low-level features [2], mid-level features [4–8] and
CNN with local information [10] and global information [11]. We also compared our
proposed methods with different architectures: ResNet with local patch (w/o intra-loss),
ResGLNet [13], ResGL-BDLSTM (w/o intra-loss), and ResGL-BDLSTM (with intra-
loss). The comparison results (classification accuracy) are summarized in Table 2. It
can be seen that our proposed methods outperformed the state-of-the-art methods [3, 5–
9, 11, 12]. The ResNet with local and global pathways outperformed the ResNet with
local patch only. The classification accuracy was significantly improved by adding the
BD-LSTM model, as well as the intra-loss.

Table 1. The distribution of database.

Type Cyst FNH HCC HEM
Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2

Training 61 69 71 60 75 69 62 79
Validation 23 17 25 23 31 36 36 17
Testing 26 24 18 31 26 27 26 28
Total 110 114 132 124
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4 Conclusions

In this paper, we proposed a method using combined residual local and global path-
ways and bi-directional long short-term memory (ResGL-BDLSTM), to tackle the
classification of focal liver lesions. The ResGLNet extracts the most representative
features from each single phase CT image, and the BD-LSTM helps to extract the
enhancement patterns in multi-phases CT images. The experimental results demon-
strated that our framework outperforms other state-of-the-art methods. In the future
work, we are going to build a large scale liver lesions dataset and to construct an end-
to-end framework that achieves lesion-based classification via one model. We believe
that our proposed framework can be applied to other contrast-enhanced multi-phases
CT images.

Table 2. Comparison results (classification accuracy (%) is represented as mean and standard
deviation)

Method Cyst FNH HCC HEM Total
Accuracy

Roy et al. [3] 97.81 �
3.1

77.27 �
6.43

58.83 �
2.39

56.41 �
14.5

71.84 �
0.04

Yang et al. [5] 88.30 �
10.6

74.64 �
28.1

75.50 �
2.0

81.32 �
6.2

78.81 �
3.4

Wang et al. [8] 85.90 �
3.6

65.14 �
32.8

83.12 �
7.5

67.99 �
20.0

74.06 �
5.7

Xu et al. [9] 68.75 �
2.9

73.53 �
4.1

87.25 �
1.3

76.92 �
10.8

77.04 �
3.1

Diamant et al. [6] 82.21 �
7.4

70.00 �
18.8

85.04 �
10.2

76.90 �
20.3

77.82 �
1.2

Xu et al. [7] 92.15 �
5.21

69.08 �
20.1

85.04 �
10.2

84.31 �
0.4

82.11 �
7.4

Frid-Adar et al. [11] (CNN
with local)

100.0 �
0.0

78.20 �
0.5

84.37 �
16.6

40.67 �
16.2

76.16 �
0.6

Yasaka et al. [12] (CNN
with global)

97.92 �
2.9

82.26 �
25.1

86.82 �
2.32

85.16 �
0.7

87.26 �
7.7

ResNet_Local 100.0 �
0.0

71.27 �
6.5

80.89 �
11.18

85.41 �
8.8

84.12 �
6.1

ResGLNet [13] 97.92 �
2.9

81.99 �
5.9

85.11 �
15.6

85.42 �
2.9

88.05 �
4.8

ResGL-BDLSTM
(without intra-loss)

98.08 �
2.2

90.19 �
8.9

88.74 �
5.0

81.25 �
8.8

89.77 �
3.59

ResGL-BDLSTM 100.0 �
0.0

86.74 �
4.1

88.82 �
10.3

87.75 �
5.5

90.93 �
0.7
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