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Abstract. About 50% of the patients consulting a gastroenterology
clinic report symptoms without detectable cause. Clinical researchers
are interested in analyzing the volumetric evolution of colon segments
under the effect of different diets and diseases. These studies require non-
invasive abdominal MRI scans without using any contrast agent. In this
work, we propose a colon segmentation framework designed to support
T2-weighted abdominal MRI scans obtained from an unprepared colon.
The segmentation process is based on an efficient and accurate quasi-
automatic approach that drastically reduces the specialist interaction
and effort with respect other state-of-the-art solutions, while decreasing
the overall segmentation cost. The algorithm relies on a novel probabilis-
tic tubularity filter, the detection of the colon medial line, probabilistic
information extracted from a training set and a final unsupervised clus-
tering. Experimental results presented show the benefits of our approach
for clinical use.

1 Introduction

About 50% of the patients consulting a gastroenterology clinic report symptoms
without detectable cause. Colonic content is a potential mechanism involved in
their symptoms. The research of colonic metabolic activity and its variations
provoked by digestive dysfunctions or diets requires non-invasive measurement
of colonic volumes and contents based on medical imaging.

Although diseases under study can be particularly disturbing, they are not
life-threatening, and therefore irradiation —if used at all— is to be kept to a
minimum. Hence, non-ionizing imaging techniques play an important role as
they allow acquiring data from patients with low-severity diseases or healthy

This work has been supported by the Spanish MINECO Ministry and by FEDER
funds under Grant No. TIN2017-88512-C2-1-R.

c© Springer Nature Switzerland AG 2018
A. F. Frangi et al. (Eds.): MICCAI 2018, LNCS 11071, pp. 638–647, 2018.
https://doi.org/10.1007/978-3-030-00934-2_71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00934-2_71&domain=pdf


Quasi-automatic Colon Segmentation on T2-MRI Images 639

volunteers. Furthermore, some clinical studies expressly reject preparation (fast-
ing and/or edema) neither contrast administration. For all these reasons, CT
imaging, which has been traditionally used for colon analysis, is not a choice.

The clinical analysis of colon is typically performed on MRI T2-weighted
modality, and its goal is to distinguish the specific volumes of the colon segments
(ascending Sasc , transverse Strv , descending Sdsc and sigma-rectum Sσ).

Experts make use of specific tools for engaging colon segmentation on MRI,
but it is a complex task due to the high level of variability of its anatomy
(specially Sσ segment) and the adjacency of regions with similar intensity levels,
such as small bowel, liver or muscular tissues. Techniques used for CT colon
segmentation are not applicable for MRI since there is not a fixed correspondence
between tissues types and intensities. Furthermore, MRI suffers from higher
levels of noise and artifacts that have an impact on segmentation algorithms.

There are few references in the bibliography for T2-MRI colon segmentation
on unprepared subjects, here we will review the most relevant. In [1] the authors
opted for the simplest segmentation strategy: slice-per-slice manual selection. In
order to ease the selection within slices, [2] improved the usability by providing
a seed region growing mechanism combined with the ability to add stop markers
for prevent leaking. A different proposal is presented in [3], which requires the
user to define a Region Of Interest (ROI) by outlining the colon manually with
a polygonal in all coronal slices. Their approach is based on k-means cluster-
ing on the intensity space within the ROI to separate colon from background.
The authors do not provide comparison metrics against ground truth, only over-
lapping measures of segmentations obtained from different users on the same
image.

In another category of applications, Mahapatra et al. [4] describe a full auto-
matic segmentation of colon areas affected by Crohn’s disease on T1-FS under
fasting condition and contrast administration. The authors build a Random For-
est classificator that permits discriminating healthy and diseased colon regions.
Finally, authors in [5] segment only one 2D colon section along a temporal
sequence of T2-HS (cine-MRI). Their strategy is based on a set of user marks
placed inside and outside the colon image of the first frame. Segmentation is
driven by 2D graph-cuts.

As far as we know, there is a lack of algorithms for T2 colon segmentation on
MRI images acquired without contrast neither colon preparation. Summarizing,
the contributions of this paper are outlined below:

– A new approach for colon segmentation based on the detection of the colon
medial line and the usage of a colon probability model that is used on a 3D
graph cuts algorithm to produce the final result. Our dual probabilistic model
uses training information for a preliminary segmentation and unsupervised
clustering for the final segmentation.

– A set of novel probabilistic tubularity filters that allow detecting generalized
tubular structures with large radius and non-circular sections. Moreover, a
set of fast algorithms to segment a coarse voxel model for adjacent colon areas
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and to reduce the search space (liver, psoas, spine and fat inner abdominal
layer) have been developed.

– Our segmentation algorithm is suitable for clinical use since it provides a
low-effort, accurate colon segmentation in MRI T2-weighted images without
neither colon preparation nor contrast administration.

– Our approach achieves a remarkable improvement in the experts interaction.
The full colon segmentation requires 5 min of user interaction (UI), and 5 min
of CPU processing. In contrast, current manual-based solutions require times
that range from 20 up to 40 min of intensive work.

Fig. 1. Overview of the segmentation pipeline. Four stages are shown: (T ) Tubularity
filter aimed to detect colon candidate areas. (A) Search space delimitation discards
adjacent regions. (M) Medial line extraction is based on a set of points provided by
the user and information on (T ) + (A). (S) is the segmentation stage, which combines
(M) + (A) with training data to obtain the final segmentation in a two-phase graph-
cuts.

2 Method Overview

Our segmentation strategy consists in modeling the colon as a generalized tube
with a characteristic probabilistic distribution of intensities and radius differen-
tiated for each colon segment. Complementary, it is convenient to exclude some
adjacent organs from the search space, since their similar intensities cause low
contrast boundaries. Our algorithm combines both approaches with a simple
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user input to obtain the precise colon segmentation. It is remarkable that the
algorithm is fully 3D, working on a 3D voxel model built from the acquired
images. Figure 1 shows the segmentation pipeline, which relies on four stages:

1. Tubularity filter: We propose a tubularity filter evolved from ideas in [6,7]
aimed to detect generalized non-uniform tubes. Since the filter has a high
tolerance to be able to detect large deviations from perfect tubularity, the
output is noisier than regular tubularity filters, and its result alone is not
sufficient for colon segmentation. The tubularity feature of each voxel includes
its direction, a tubularity measure and an estimated radius, which are used
in subsequent stages for the selection of colon candidate areas and for spinal
cord detection.

2. Non-colonic area delimitation: In this stage, fast tailored algorithms
coarsely segment voxel models for four anatomic structures which are closer
to the colon: liver, psoas+pelvic muscles, spinal cord + spine and the inner
abdominal fat capsule. Therefore, its location is valuable for preventing leaks
that may be caused by low contrast boundaries. The output of this stage is
a set of binary masking volumes delimiting the segmented structures.

3. Colon medial line extraction: The estimation of the colon medial line
is the starting point of our segmentation strategy. The user has to provide
a minimal set of 5 anatomical reference points along the colon path that
are easily located by specialists on MRI: cecum, hepatic angle, splenic angle,
descending-sigma interface and anus. Depending on the anatomical complex-
ity of the case under study, further points can be added to guide the location
of the medial path.
On this basis, we build a graph where nodes represent connected sets of voxels
with similar intensities. Graph edge cost penalizes paths of low tubularity,
tube direction changes and high intensities. The medial path is obtained as
the union of the lowest cost paths between pairs of consecutive points provided
by the user.

4. Colon graph-cuts based segmentation: Last stage performs the colon
segmentation. It requires information from the previous stages (medial line
(M), search space (A) and intensity (I)) and information from a training
database, which is computed in a pre-process and updated after each new
performed segmentation.
In the training phase, we use the golden truth segmentations (see Sect. 3) to
estimate p(D, Î), which is the joint probability function of the normalized
intensity Î, and the distance to the colon medial, D.
The intervals of Î and D are quantized, and the probability function is stored
into our training database as a 2D histogram. The probability is analyzed
within a ROI defined by those voxels having D below 1.5 ·CMR, where CMR
denotes the Colon Maximum Radius (30 mm).
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Fig. 2. Probability distribu-
tion p(D, Î|CStrv ) of transverse
colon.

The intensity is normalized using the range
of values along the medial path, Î = (I −
μmedial)/σmedial, redressing this way the effects
of MRI intensity variability. p(D, Î) is analyzed
independently within each colon segment and
outside the colon (C). Hence, we obtain 5 prob-
ability distributions denoted by p(D, Î|region)
where region ∈ {C,CSasc

, CStrv
, CSdsc

, CSσ
}.

Figure 2 shows the distribution of p(D, Î|CStrv
)

in the transverse colon. The training also pro-
vides statistics of D for the voxels on the colon boundaries per segment
{DBsg

μ ,DBsg
σ }.

Now we describe the three steps of the last segmentation stage:
(a) From p(D, Î|region) obtained in the training and the colon medial (M), we

derive the probability of a voxel to be colon p(C|D, Î, sg) and to be not-
colon p(C|D, Î, sg) depending on its normalized intensity, medial distance
and nearest segment sg ∈ {CSasc

, CStrv
, CSdsc

, CSσ
}. At this point we

engage the preliminary segmentation. A graph G1 is created where nodes
represent ROI voxels and graph edges represent voxel neighborhoods. In
order to segment via graph-cuts we add two extra nodes, sink (colon)
and source (not-colon), and use p(C|D, Î, sg) and p(C|D, Î, sg) to build
sink and source costs in the regional term R of graph cuts algorithm. The
result is the preliminary colon segmentation, S1.

(b) S1 happens to be a conservative colon segmentation, but is not accu-
rate enough. In the second step we cluster intensities in the area outside
S1 within the ROI, using an Expectation Maximization (EM) algorithm.
We look for two modalities, one corresponding to fat tissues (high inten-
sity) and the other corresponding to other organs or misclassified colon
(medium intensity). At the end of the process we obtain the probabilies
of a voxel to be C or C as functions of the intensity: p(C|I) and p(C|I).
The model is based on the mixture of three gaussians, the two obtained
from EM and the gaussian model from S1 intensities.

(c) Using boundary distance statistics {DBsg
μ ,DBsg

σ } from training, we derive
p(C|D, sg) and p(C|D, sg), which describe the probability of a voxel to
be colon/not-colon depending on its medial distance (Eq. 1) and the cor-
responding colon segment.

p(C|D, sg) =
1
2
(1 − erf (

D − DBsg
μ√

2DBsg
σ

)) ; p(C|D, sg) = 1 − p(C|D, sg)

(1)
In the last stage we merge the colon/not-colon probabilities (Eq. 2) based
on intensity (from clustering) with the probabilities based on the medial
distance (from training) in order to build the probabilities of a voxel to
be colon/not colon as functions of intensity, medial distance and segment:



Quasi-automatic Colon Segmentation on T2-MRI Images 643

p(C|D, I, sg) and p(C|D, I, sg) (Eq. 3). In a similar way that in step (a),
we build a graph G2 using these new probabilities in the regional terms
of graph cuts.
The new result, S2, is more accurate than S1. If the segmentation S2

is not satisfactory, the user can add markers (positive or negative) on
misclassified areas. Marker information is used to update the regional
term costs of the affected nodes of the graph. Graph-cuts is run again to
obtain a new corrected version of the segmentation. The refinement is
accomplished in near real-time, which allows the user to add markers
interactively.

M(pD, pI) = pD(1 + 2(1 − pD)(pI − 0.5)) (2)

p(c|D, I, sg) = M(p(c|D, sg), p(c|I)) where c ∈ {C,C} (3)

Fig. 3. Ring filter

2.1 Tubularity Detection Filter

We propose a new Tubularity Detection Filter (TDF) that is built as a combina-
tion of two filters: the ring filter (RF) that computes for each voxel a tubularity
measure RF and its associated radius s, and the directional filter (DF), which
estimates the tube direction Pθ. By applying TDF to a certain voxel v, it gets
characterized by (RF(v), s(v) and Pθ(v)).

The Ring Filter (RF) works on a set of planar ring-shaped vectorial kernels
k(s,θ)(x) that lie in a plane orthogonal to Pθ and have a scale s, Fig. 3. Multiple
kernels are necessary to cover different tube sizes and 3D orientations. On this
purpose 13 scales s (s ∈ [7 mm, 31 mm] in steps of 2 mm) and 13 directions θ
(pointing to the 26 neighbour voxels) are used. Kernel values are 0 outside the
Pθ plane and show a radial Gaussian distribution on the Pθ plane as k(s,θ)(x) =
N(μ=0,σ= γ2s

3 )(‖x‖ − s(1 − γ)), where γ = 0.25.
The tubularity measure RF (v) of a certain voxel v is computed as RF (v) =

maxs,θ(M
s,θ
ring(v) · Ms,θ

sym(v)), where this maximum is computed for all 13
scales and 13 directions, and its associated radius is computed as s(v) =
arg maxs,θ(M

s,θ
ring(v) · Ms,θ

sym(v)).
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Ms,θ
ring is the result of computing the well-known convolution of the filter

kernel k(s,θ)(x) with the magnitude of the projection of the intensity gradient
at v on the Pθ plane. The symmetry measure Msym weights Mring with the
objective to punish partly open areas. We compute the symmetry measure Msym

by analysing partial convolutions Mringsectors on angular sections φ on the Pθ

plane, see Fig. 3. We group sections by pairs P , each pair including one section
and its opposite symmetric. For each P , we calculate the symmetry pair value
(SPV ) as the square of geometric mean divided by the arithmetic mean of P .
Msym is the mean of all SPV .

Finally, the DF filter is used to improve the estimation of the tube direction.
To this end, we trace 92 uniformly spaced directions from v plus 45 even spaced
sample directions in the coronal plane. The tube direction D(v) is estimated by
the ray direction that has minimum average squared difference to the central
voxel v.

3 Evaluation and Results

The evaluation experiments tested our segmentation approach from three differ-
ent perspectives, its accuracy with respect manual golden truth segmentations,
its computational and user interaction cost, and its usability.

The data set used for the accuracy evaluation includes 30 T2-weighted
HASTE volumes (256× 256× 50). Images were obtained from 15 healthy vol-
unteers after and before defecation as part of a clinical experiment to determine
the effect of diet on colonic content volume. These data set were segmented
accurately by experienced specialists using BowelMetryRM (BMRM) software
(its description is explained in [2]). This manual segmentation is considered the
golden standard, and is used both for training and validation, using one-left-out
methodology.

Dice Similarity Coefficient (DSC ) and Sensitivity (SENS ) measures were
selected for comparing our segmentation results against the golden standard.
Both measures are studied with respect the number of points introduced by the
specialist in the stage M (see Fig. 1) of our approach. Figure 5 shows the evolution
of DSC and SENS from 5 up to 16 path points. Segmentation with 5 points
reaches a mean DSC above 0.73, but the variability of the results (σDSC = 0.17)
advises using a larger number of points. The segmentation accuracy saturates
near 12 points, reaching medians around 0.85 for DSC and 0.86 for SENS , with
standard deviation (SD) values σDSC = 0.05 and σSENS = 0.07 respectively.

In the last stage of the approach (S), the addition of user markers for seg-
mentation correction can improve the accuracy of the results as show in Fig. 6.
After the addition of 5 markers, the overall median DSC reaches 0.913, with
σDSC = 0.016 (Fig. 6).

From a clinical point of view, we have compared the effort of manual seg-
mentation using BMRM software with our proposal. First, a BMRM expert
segmented three new cases not included in the validation experiments using
our algorithm, after ten minutes briefing on how operating the software. Next,
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Fig. 4. Details on segmentation results for a case of sigma colon highly convoluted. (a)
original image and two ROI. (b.1) and (b.2) depict ROIs, with golden truth segmenta-
tion (left) and our segmentation (right). (c) shows volume rendering (front view, back
view) of our segmentation.

Fig. 5. Tukey boxplot for DSC and SENS measures for our segmentation against
golden standard and its relationship with the number of used path points.

Fig. 6. DSC improvement with the addition of manual correction markers.
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the specialist segmented the volumes again using BMRM. Note that for fair the
learning effect can only benefit the manual segmentation. Time and mouse usage
were tracked along the execution.

The results show that manual segmentation takes on average 25’ of full user
interaction, with 1230 mouse wheel turns, and 122 cm of mouse drag. In con-
trast, our proposal averages 5’ for user interaction, of which 2’ correspond to
point placement in stage (M) and 3’ to review and correct, if needed, the pro-
posed segmentation; CPU computational cost was 5’ with an i7 5820 K pro-
cessor. Mouse usage drops to 500 wheel turns and 36 cm of mouse drag. These
results show that our proposal clearly performs much better in terms of time and
effort than BMRM. Qualitatively, the users declared to feel highly relieved with
the simplicity of the new approach when compared with manual segmentation,
emphasizing that the visual fatigue is drastically reduced.

4 Conclusions

We have presented a quasi-automatic pipeline for colon segmentation on T2-
weighted MRI images obtained from unprepared colon. Our proposal achieves an
important reduction of the segmentation time with respect state-of-the-art solu-
tions, also reducing the user interaction up to a 80% and the usage effort. The
segmentation accuracy is comparable to manual experts one. Medical experts
found that this new algorithm improves efficiency and it is suitable for its use in
clinical practice due to its easy-to-use, low interaction and improves the objec-
tivity of the segmentations.

Segmentation pipeline relies on a new Tubularity filter that allows the detec-
tion of irregular tubular structures, such as the colon. The combination of tubu-
larity, a reduced search space and a probabilistic model based on intensity and
radius per segment have demonstrated its suitability for accurate colon segmen-
tation.
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