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Abstract. Localization and labeling of posterior ribs in radiographs
is an important task and a prerequisite for, e.g., quality assessment,
image registration, and automated diagnosis. In this paper, we propose
an automatic, general approach for localizing spatially correlated land-
marks using a fully convolutional network (FCN) regularized by a con-
ditional random field (CRF) and apply it to rib localization. A reduced
CRF state space in form of localization hypotheses (generated by the
FCN) is used to make CRF inference feasible, potentially missing cor-
rect locations. Thus, we propose a second CRF inference step searching
for additional locations. To this end, we introduce a novel “refine” label
in the first inference step. For “refine”-labeled nodes, small subgraphs are
extracted and a second inference is performed on all image pixels. The
approach is thoroughly evaluated on 642 images of the public Indiana
chest X-ray collection, achieving a landmark localization rate of 94.6%.
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1 Introduction

Segmenting ribs in chest radiographs is used for the analysis of the lung paren-
chyma, as the overlaid ribs may obscure important findings. Rib shadows may
be either excluded from the automatic analysis [1] or suppressed from the image
[2] to minimize their impact. Ribs may also be used as an anatomical reference
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to automatically locate findings like lung lesions or to establish correspondence
between different images (e.g., in follow-up acquisition). Further on, counting
the ribs in the lung field is a standard radiological procedure used to assure
proper inhalation state in chest X-ray quality assessment. Unlike the previous
two, these applications require the ribs not only to be segmented, but also to be
anatomically labeled correctly.

There is a number of methods described in literature to segment ribs in
chest radiographs using either pixel classification [3], atlas registration [1], or a
mixture of methods [4]. But there is no method described yet that does a robust
anatomical labeling of posterior ribs. Even the atlas-based method did not use
rib labels. Unlike CT where this task could be solved easier [5,6], the upper
ribs are often overlaid in a chest radiograph (by, e.g., clavicles and other ribs)
in a way that may prevent an algorithm from identifying and counting all the
upper ribs properly. Also using the lung field as reference space appears not to
be sufficient to unambiguously assign an anatomic label to a detected rib.

In this paper, we propose an automatic and general approach for localizing
and labeling spatially correlated point landmarks. We apply our approach specif-
ically to rib localization and labeling in posterior-anterior chest radiographs, by
formulating the problem as finding a key point on each rib near the rib cen-
ter. Unlike previous methods, it is a general approach and does not make or
need any assumption about the task. Instead, all model parameters are auto-
matically learned from annotated training data. First, the fully convolutional
network (FCN) U-Net [7] is used to generate localization hypotheses. Then, a
conditional random field (CRF) is applied to assess spatial information between
landmarks. For feasibility, the CRF state space is combinatorically defined by
the U-Net-generated localization hypotheses. Since the CRF has no means to
select other than these localization hypotheses, we introduce a novel “refine”
label. This allows the CRF to select this label instead of any of the localization
hypotheses in case, e.g., none of them presents a viable option w.r.t. the CRF
model. A second inference is performed for all “refine”-labeled nodes on a local
subgraph over all image pixels rather than the set of localization hypotheses.
Applying our approach to 642 images of the publicly available Indiana chest
X-ray collection [8], we are able to localize and label 94.6% of the 16 individ-
ual landmarks correctly, corresponding to 83.0% fully correct cases. A median
distance to the rib centerline of 0.7 mm is achieved.

2 Method

We formulate the problem as predicting N = 16 labeled key points for each pos-
terior rib (2nd to 9th) close to its centerline (see Fig. 3a) in posterior-anterior
chest radiographs. Our approach to solve this problem is split into three steps
(compare Fig. 1): First, a FCN is used to regress heat maps to derive n = 15 local-
ization hypotheses X̂i = {x̂i,1, . . . , x̂i,n} for each key point i ∈ [1 . . N ] (Fig. 1a).
Second, the unary information of the localizer is combined with binary informa-
tion assessing spatial features between key point localization hypotheses. Both
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are jointly modeled in a CRF with key points being the nodes and the corre-
sponding localization hypotheses the respective states. An additional “refine”
label is introduced for each node to be selected if no localization hypotheses is
plausible (given the CRF model). CRF A* inference [9] is applied to find the best
selection Ŝ = (ŝ1, . . . , ŝN ) ∈ [0 . . n]N out of all possible selections |S| = (n+1)N .
For each key point i, the inference either selects a localization hypothesis x̂i,ŝi

if
ŝi ∈ [1 . . n], or the “refine” label if ŝi = 0 (Fig. 1b). In the third step, we derive
positions for the “refine”-labeled nodes. We fix all nodes with predicted posi-
tions and optimize each “refine” node in a small subgraph over all image pixels
rather than over the n localization hypotheses only (Fig. 1c). The following three
subsections describe each step in detail.

Fig. 1. Schematic illustration of our three-step approach: (a) Generation of localization
hypotheses using a U-Net, (b) followed by a CRF modelling spatial relations between
key points and (c) a final local refinement based on a subgraph considering the whole
image domain.

2.1 Generating Localization Hypotheses Using a U-Net

The goal of the first step is to predict candidate positions for each key point. The
basic idea is to transform an image I : R2 → R into pseudo (not normalized)
probability maps ˜Pi : R

2 → R
+ (for each target key point i) in which the

location of the highest value x̂i,1 = arg maxx
˜Pi(x) corresponds to the most

likely predicted position of key point i.
To do so, we use U-Net [7], which has proven to deliver good results in the

medical domain. However, its architecture is designed for pixel-wise segmenta-
tion, while we aim at localizing points to combine it with a CRF. Therefore,
we directly formulate the problem as a pixel-wise heat map regression. This is
achieved by dropping the soft-max classification and extending the final layer
to N feature maps. Each feature map corresponds to a key point specific heat
map that we want to regress. Assuming that high values in these heat maps
correspond to likely positions of the searched key point, we can simply apply
non-maximum suppression to each heat map to generate n localization hypothe-
ses X̂i = {x̂i,1, . . . , x̂i,n} (we use n = 15) for each key point i. This setup allows
to generate localization hypotheses jointly for all key points in a single network.
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Training. The modified U-Net is trained using stochastic gradient descent in
the form of the Adam [10] algorithm using standard parameters with a mini-
batch size of 8 and a sum-squared-error loss function. The target regression
values are defined by a multivariate Gaussian distribution N (x∗

i , 1/91r2) with
its mean located at the key point’s true position x∗

i . This provides high values
close to the true position and very low values outside a small neighborhood
(r = 6). As advocated in [7], we also perform data augmentation in form of
elastic transformations of the training images, effectively increasing the training
set size by the factor 11. We stop the training after 1000 epochs.

2.2 Selecting Reasonable Localization Hypotheses Using a CRF

To compensate for potentially incorrect first best localization hypotheses x̂i,1 for
arbitrary key points i, we use a CRF to model geometric relationships between
key points. Each key point i ∈ [1 . . N ] is represented by a node in the graph
with the corresponding localization hypotheses X̂i being the respective labels.
We introduce an additional “refine” label for the CRF to choose during inference
to compensate for cases where none of the localization hypotheses is plausible
(and might negatively influence the selection of neighboring nodes). This “refine”
label is used in our third step (Sect. 2.3) to still derive an accurate prediction in
case CRF inference assigned the “refine” label to any node.

An energy-based formulation is applied where a low energy E(S) of a selec-
tion S = (s1, . . . , sN ) implies a large posterior probability. For each node,
either a localization hypothesis x̂i,si

is assumed if si > 0, or the “refine”
label if si = 0. The energy E(S) of the CRF is parameterized by a set of J
unary and binary potential functions Φ = {φ1(·), . . . , φJ (·)} with corresponding
weights Λ = (λ1, . . . , λJ) and missing potential values β = (β1, . . . , βJ ) for the
“refine” label si = 0:

E(S) =
J

∑

j=1

λj ·
{

βj if si = 0 for any i ∈ Scope(φj)
φj(S) else . (1)

The inclusion of the missing energy values β is necessary, because it is not pos-
sible to compute potential values for the “refine” label si = 0. We use the same
four potential types as introduced in [11]: For each key point i, an unary poten-
tial φloc

i (S) corresponding to the localizer’s respective heat map value is intro-
duced (see Fig. 2a). For each key point pair i and j, a distance 0potential φdist

i,j (S),
an angle potential φang

i,j (S) and a vector potential φvec
i,j (S) are used to model the

geometric relations. The probability densities of estimated Gaussian, von Mises
and multivariate Gaussian distributions, respectively, are used as potential values
(see Fig. 2b). Finally, to efficiently find the best selection Ŝ = arg minS∈S E(S),
exact inference in form of the A* algorithm [9] is applied.
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Training. The weights Λ and the missing energies β are automatically learned
in a training phase using a gradient descent scheme minimizing a max-margin
hinge loss L over data D = {d1, . . . ,dK}. The idea is to increase the energy
gap between the “correct” selection S+ and the best (lowest energy) “incor-
rect” selection S− until a certain margin m is satisfied. Let our loss function be
defined as

L(Λ, β) =
1
K

K
∑

k=1

δ(S+
k ,S−

k ) · max
(

0,m + E(S+
k ) − E(S−

k )
)

+ θ · ‖Λ‖1 (2)

subject to λj ≥ 0 for j = 1, . . . , J , with

δ(S+
k ,S−

k ) =
1

NR

(

e(S−
k ) − e(S+

k )
) ∈ [0, 1] (3)

weighting each training sample k w.r.t. the reduction in error (capped at
R = 100)

e(S) =
N

∑

i=1

⎧

⎨

⎩

0 if “ refine ′′(si = 0) predicted and true,
min (R, ‖x̂i,si

− x∗
i ‖2) if “non-refine′′(si > 0) pred. and true,

R else,
(4)

going from the incorrect selection S−
k to the correct selection S+

k . The “refine”
label (si = 0) is assumed true, if none of the localization hypotheses (si >
0) is correct (the localization criterion is defined in Sect. 3). An additional θ-
weighted L1 regularization term w.r.t. Λ was added to further accelerate the
sparsification of terms. To optimize the loss function from Eq. (2), we apply
again the Adam algorithm [10] starting from a grid-structured (Fig. 1b) graph.
Once all CRF parameters are estimated, we remove unnecessary potentials where
λj = 0, effectively optimizing the graph topology and improving the inference
time while simultaneously improving the localization performance.

2.3 Going Beyond Potentially Incorrect Localization Hypotheses

After finding the optimal selection Ŝ using CRF inference, we look at all key
points {i | si = 0} that have the “refine” label si = 0 instead of a localization
hypothesis assigned. In order to assign those nodes a position, we start by fixing
all nodes {i | si > 0} with a properly selected localization hypothesis x̂i,si

. Then,
we individually optimize each “refine”-labeled node by considering all connected
binary potentials Φi = {φj | i ∈ Scope(φj) ∧ ∃ i′ : (i′ ∈ Scope(φj) ∧ si′ > 0)}
that are fully specified (except for the current node). Given that this second
inference

x̃i = arg min
x∈ I

∑

φ′
j ∈ Φi

λj · φ′
j(x) (5)

is performed on a very small subgraph, we can increase the search space to all
possible pixel positions x ∈ I for that node, rather than the set of localization
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hypotheses, which would be intractable on the full problem. Note that we used
some handwavy notation φ′

j to indicate that the (binary) potentials are com-
puted by solely altering the position of key point i, since all others are known
and fixed. By optimizing all “refine” nodes in decreasing order of the number
of connected potentials |Φi|, we can use previously refined positions in the next
optimization in terms of more usable potentials. This also prevents the case that
a node may not have any usable potential. How this approach can overcome the
limitation of the fixed state space is illustrated on a test case in Fig. 2. Note that
this final step does not require any training.

Fig. 2. Illustration of the refinement process for L9 (true key point indicated as red
cross). The “refine” label was chosen by the CRF inference for L9 because all n localizer
hypotheses – shown enumerated in (a), heat map overlaid on cropped original image –
yield large total energies E(S). Utilizing the connected (b) binary potentials from L8
and R9, we are still able to (c) predict a correct position (red point) for L9 by evaluating
over all image pixels instead of just the (here incorrect) localization hypotheses.

3 Experiments and Results

We evaluated our approach on 1000 consecutive images of various quality of
the publicly available anonymized Indiana chest X-ray collection from the U.S.
National Library of Medicine [8], downsampled to an isotropic resolution of
1× 1mm/px. To derive key points for the unlabeled images for training and
evaluation, we started by generating unlabeled posterior rib centerlines using an
automatic approach based on [4]. The generated centerlines were then manu-
ally checked for quality, i.e., the line should be properly located within the rib,
and correctly labeled, potentially discarding images. Following this approach,
we generated labeled centerlines for the posterior ribs L2, . . . ,L9,R2, . . . ,R9 for
642 images. The middle points on the centerlines (w.r.t. the x-axis) have been
selected as point annotations for each key point (except for the second and third
rib where a factor of ±0.3 and ±0.4, respectively, instead of 0.5 was chosen).
A corresponding predicted point is treated correct (localization and labeling
criterion) if it is close to the annotated point (distance ≤ 15mm) and very
close to the centerline (distance ≤ 7.5mm). This resembles the test whether
the point lays on the rib while allowing for some translation along the rib. An
example annotation as well as this localization criterion are depicted in Fig. 3a.



568 A. O. Mader et al.

Note that correct point localizations also mean correct labels for the previously
generated unlabeled centerlines, which effectively means the automatic genera-
tion of labeled centerlines as well.

Fig. 3. (a) Illustration of the centerline and key point annotations and the resulting
localization criterion, i.e., the area where a localization hypothesis is considered correct.
Images in (a) and (b) are cropped and have been enhanced using adaptive histogram
equalization. (b) Predicted positions in 642 test images visualized in a single image by
registering the images using the true positions (affine and b-spline) and warping the
predicted positions. Labels are shown color coded. (c) Typical errors involve an incor-
rect localization in the abdomen (first image) and chain errors caused by intermediate
mistakes (second image).

We used a 3-fold cross-validation setup in our experiments, which provided us
with 428 training images in each fold. Each training corpus was divided into three
non-overlapping subsets Dpot, Dweights and Dval, containing 50%, 40%,10% ran-
domly selected training images, respectively. Dpot was used to train the localizer
(Sect. 2.1) and to estimate the statistics of the CRF potential functions (means,
variances). Dweights was used to optimize the CRF potential weights Λ and to
estimate the missing energies β. The last subset Dval was used as validation
corpus to select unknown meta parameters like learning rate and regularization
parameter θ.

Applying our method, 94.6% of the key points were labeled correctly, corre-
sponding to 83.0% of the images where all 16 key points were correct. The rates
for individual key points and for the different steps in our chain are depicted in
Fig. 4. First, we see that the CRF improves upon the plain U-Net results, espe-
cially in terms of the number of correct cases. Second, we see that the U-Net
provides few good alternative localization hypotheses, which is apparent in a bad
upper bound of the CRF of just 59.7% and justifies our third step. Third, we see
that the additional CRF refinement step improves upon the CRF, where the per-
centage of correct cases increases dramatically from 57.3% to 83.0%. Fourth, the
performance slightly decreases towards the lower ribs, which is probably caused
by low contrast, higher variability and fewer meaningful surrounding structures
(Fig. 3c). Errors in terms of Euclidean distance to the true position as well as
distance to the centerline are listed in Table 1. The resulting median values of
2.8 mm and 0.7 mm, respectively, are in line with the visualization of the pre-
diction results depicted in Fig. 3b. The overall average runtime of our approach
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per case comes down to 36 ms U-Net + 61 ms CRF + 73 ms refinement =
170 ms running our unoptimized Python implementation on an Intel Xeon CPU
E5-2650 in combination with an NVIDIA Titan X.

See supplement 1 for supporting content.

Fig. 4. Rates for correct cases (i.e., all 16 key points localized correctly) and correctly
localized key points for our three steps in percent. Upper bound indicates the theoretical
maximal performance of the CRF, caused by the limitation of the state space to the
set of localization hypotheses. 100% corresponds to 642 cases and individual key points
(L2-R9), and 642 · 16 = 10272 total key points.

Table 1. Median and mean Euclidean distance between true and predicted position
(error) as well as median and mean distance between centerline and predicted position
(line distance) for individual and all key points in mm.

Metric L2 R2 L3 R3 L4 R4 L5 R5 L6 R6 L7 R7 L8 R8 L9 R9 All

Error / mm

Median 3.3 3.4 3.0 3.0 2.1 2.6 2.0 2.1 2.3 2.3 2.5 2.6 3.4 2.8 4.6 3.8 2.8

Mean 4.1 4.3 3.9 4.0 3.4 3.6 3.3 3.5 4.0 3.9 4.6 4.8 6.4 5.6 8.4 6.8 4.7

Line distance / mm

Median 0.8 0.9 0.8 0.9 0.6 0.6 0.5 0.5 0.5 0.5 0.6 0.6 0.9 0.8 1.2 1.1 0.7

Mean 1.2 1.2 1.6 1.6 1.7 1.4 1.6 1.5 2.1 1.9 2.6 2.7 3.9 3.3 4.8 4.0 2.3

4 Discussion and Conclusions

We presented a general approach for localization and labeling of spatially corre-
lated key points and applied it to the task of rib localization. The state-of-the-art
FCN U-Net has been used as localizer, which was regularized by a CRF incorpo-
rating spatial information between key points. The limitation of a reduced CRF
state space in form of localization hypotheses imposed by the exact CRF infer-
ence in large graphs has been overcome with a novel “refine” node label. After a
first CRF inference, a second inference is performed on small subgraphs formed
by the marked “refine” nodes to refine the respective key points over all image
pixels (rather than the set of localization hypotheses). Applying our approach to
624 images of the publicly available Indiana chest X-ray collection [8], we were
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able to correctly localize and label 94.6% of the 16 key points, corresponding to
83.0% fully correct cases. The introduced refinement allowed for an increase of
25.7 percent points in fully correct cases over the global CRF alone. Note that
this was achieved without domain-specific assumptions; all CRF model param-
eters were automatically learned from annotated training data. Our approach is
thus directly applicable to other anatomical localization tasks.

In future work, we are going to increase the rotation and scaling invariance
by incorporating ternary potentials over the commonly used binary ones, with
tractability being the main challenge.
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