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Abstract. Cardiac functional parameters, such as, the Ejection Frac-
tion (EF) and Cardiac Output (CO) of both ventricles, are most imme-
diate indicators of normal/abnormal cardiac function. To compute these
parameters, accurate measurement of ventricular volumes at end-diastole
(ED) and end-systole (ES) are required. Accurate volume measurements
depend on the correct identification of basal and apical slices in cardiac
magnetic resonance (CMR)) sequences that provide full coverage of both
left (LV) and right (RV) ventricles. This paper proposes a novel adver-
sarial learning (AL) approach based on convolutional neural networks
(CNN) that detects and localizes the basal/apical slices in an image
volume independently of image-acquisition parameters, such as, imaging
device, magnetic field strength, variations in protocol execution, etc. The
proposed model is trained on multiple cohorts of different provenance,
and learns image features from different MRI viewing planes to learn the
appearance and predict the position of the basal and apical planes. To
the best of our knowledge, this is the first work tackling the fully auto-
matic detection and position regression of basal/apical slices in CMR
volumes in a dataset-invariant manner. We achieve this by maximizing
the ability of a CNN to regress the position of basal/apical slices within a
single dataset, while minimizing the ability of a classifier to discriminate
image features between different data sources. Our results show superior
performance over state-of-the-art methods.

Keywords: Deep learning + Dataset invariance - Adversarial learning
Ventricular coverage assessment - MRI
© Springer Nature Switzerland AG 2018

A. F. Frangi et al. (Eds.): MICCAI 2018, LNCS 11071, pp. 481-489, 2018.
https://doi.org/10.1007/978-3-030-00934-2_54


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00934-2_54&domain=pdf

482 L. Zhang et al.

1 Introduction

To obtain accurate and reliable volume and functional parameter measurements
in CMR imaging studies, recognizing basal and apical slices for both ventricles is
crucial. Unfortunately, current practice to detect basal/or apical slice positions
is still carried out by visual inspection of experts on the image. This practice
is costly, subjective, error prone, and time consuming [1]. Although significant
progress [14] has been made in automatic assessment of full LV coverage in
cardiac MRI, to accurately measure volumes and functional parameters for both
ventricles where the basal/apical slices are missing, methods to estimate the
position of the missing slices are required [10]. Such methods would be critical to
prompt the intervention of experts to correct problems in data measurements, or
to trigger algorithms that can cope with missing data by, for instance, imputation
[5] through image synthesis, or shape based extrapolation. This paves the way
to “quality-aware image analysis” [13]. To the best of our knowledge, previous
work regarding image quality control has focused solely on coverage detection of
the LV, but not on missing slice position estimation.

In medical image analysis, it is sometimes convenient or necessary to infer an
image in one modality from another for image quality assessment purposes. One
major challenge of basal/apical slice estimation for CMR, comes from differences
between data sources, which are tissue appearance and/or spatial resolution
of images sourced from different physical acquisition principles or parameters.
Such differences make it difficult to generalize algorithms trained on specific
datasets to other data sources. This is problematic not only when the source
and target datasets are different, but more so, when the target dataset con-
tains no labels. In all such scenarios, it is highly desirable to learn a discrimina-
tive classifier or other predictor in the presence of a shift between training and
test distributions, which is called dataset invariance. The general approach of
achieving dataset adaptation has been explored under many facets. Among the
existing cross-dataset learning works, dataset adaptation has been adopted for
re-identification hoping labeled data from a source dataset can provide trans-
ferable identity-discriminative information for a target dataset. [7] explored the
possibility of generating multimodal images from single-modality imagery. [8,9]
employed multi-task metric learning models to benefit the target task. However,
these works are focused mainly on linear assumptions.

In this paper, we focus on the non-linear representations and analysis of
short-axis (SA) and long-axis (LA) cine MRI for the detection and regression of
the basal and apical slices of both ventricles in CMR volumes. To deal with the
problem where there is no labeled data for a target dataset, and one hopes to
transfer knowledge from a model trained on sufficient labeled data of a source
dataset sharing the same feature space, but with a different marginal distribu-
tion we present these contributions: (1) We present a unified model (MDAL)
for any cross-dataset basal/apical slice estimation problem in CMR volumes;
(2) We integrate adversarial feature learning by building an end-to-end architec-
ture of CNNs and transferring non-linear representations from a labeled source
dataset to a target dataset where labels are non-existent. Our deep architecture
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effectively improves the adaptability of learning with data of different databases;
(3) A multi-view image extension of the adversarial learning model is proposed
and exploited. By making use of multi-view images acquired from short- and
long-axis views, one can further improve and constrain the basal/apical slice
position. We evaluate our method on three datasets and compare with state-
of-the-art methods. Experimental results show the superior performance of our
method compared to other approaches.

2 Methodology

2.1 Problem Formulation

The cross-dataset localization of basal or apical slices can be formulated as two
tasks: (i) Dataset Invariance: given a set of 3D images X° = [X],...,X}y] €
R™*nxz"XN" of modality M, in the source dataset, and Xt = [X!, ... X4] €
RmXnxz XN of modality My in the target dataset. m,n are the dimensions of
axial view of the image, and z° and z' denote the size of images along the z-
axis, while N* and N are the number of volumes in source and target datasets,
respectively. Our goal is to build mappings between the source (training-time)
and the target (test-time) datasets, that reduce the difference between the source
and target data distributions; (i4) Multi-view Slice Regression: In this task, slice
localization performance is enhanced by using multiple image stacks, e.g. SA
and LA stacks, into a single regression task. Let X* = {x?,77}Z, and Y*® =
{y3,75}7%, be a labeled 3D CMR volume from source modality M, in short-
and long-axis, respectively, and x;, xJ, and y7, y, be the short-axis slices, and
long-axis image patches of the basal and apical views; let X' = {x! LZ;1 and
Y = {y! f;l represent an unlabeled sample from the target dataset in short-
and long-axis, i represents the i*" slice and Z is the total number of CMR
slices. Our goal is to learn the discriminative features from x3, x;, and y}, y, to
localize the basal and apical slices in two axes for CMR volumes in the target
dataset!. We use the labeled UK Biobank (UKBB) [11] cardiac MRI data cohort
together with the MESA? and DETERMINE? datasets, and apply our method
to cross-dataset basal and apical slice regression tasks.

2.2 Multi-Input and Dataset-Invariant Adversarial Learning

Inspired by Adversarial Learning (AL) [6] and Dataset Adaptation (DA) [12]
for cross-dataset transfer, we propose a Dataset-Invariant Adversarial Learning
model, which extends the DA formulation into a AL strategy, and performs them
jointly in a unified framework. We propose multi-view adversarial learning by

! Notation: Matrices and 3D images are written in bold uppercase (e.g., image X,
Y), vectors and vectorized 2D images in bold lowercase (e.g., slice x, y) and scalars
in lowercase (e.g., slice position label r).

2 http://www.cardiacatlas.org/studies/mesa/.

3 http://www.cardiacatlas.org/studies/determine/.
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BasallApical Slice
Regression
in SAX

Fig. 1. a: Schematic of our dataset-invariant adversarial network; b: System overview
of our proposed dataset-invariant adversarial model with multi-view input channels for
bi-ventricular coverage estimation in cardiac MRI. Each channel contains three conv
layers, three max-pooling layers and two fully-connected layers. Additional dataset
invariance net (yellow) includes two fully-connected layers. Kernel numbers in each
conv layer are 16, 16 and 64 with sizes of 7 x 7, 13 x 13 and 10 x 10, respectively; filter
sizes in each max-pooling layer are 2 x 2, 3 x 3 and 2 x 2 with stride 2.

creating multiple input channels (MC) from images which are re-sampled to the
same spatial grid and visualize the same anatomy An overview of our method
is depicted in Fig. 1. Given two sets of slices {x$}¥,, {y$} Y, with slice position
labels {r$}X | for training, to learn a model that can generalize well from one
dataset to another, and is used both during training and test time to regress the
basal/apical slice position, we optimize this objective in stages: (1) we optimize
the label regression loss

C; = »C'r‘(Gsigm (Gcon'u (st Ys; ef)v 97‘)7 ’1"7;)
1 1
= 3 i~ Gain G (350730701 4 3 (10715 + 10 1Z)

where 0 is the representation parameter of the neural network feature extractor,
which corresponds to the feature extraction layers. 6, is the regression parameter
of the slice regression net, which corresponds to the regression layers. r; denotes
the i*" slice position label. Hf and 0, are trained for the #** image by using
the labeled source data {X?,r$}¥ and {Y?,r$}¥). (2) Since dataset adversar-
ial learning satisfies a dataset adaptation mechanism, we minimize source and
target representation distances through alternating minimax between two loss
functions: one is the dataset discriminator loss

E?j = Ld(Gdisc(Gconv(Xsa Vs, Xty Yt ef)a 0d)7 dz)
= - Z 1 [Od = dz] 1Og(Gdisc(Gconv(XS7 Vs, Xt, Y5 ef); ad)v dz)7 (2)

%

which classifies whether an image is drawn from the source or the target dataset.
0g4 indicates the output of the dataset classifier for the i*” image, 64 is the param-
eter used for the computation of the dataset prediction output of the network,
which corresponds to the dataset invariance layers; d; denotes the dataset that
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the example slice ¢ is drawn from. The other is the source and target mapping
invariant loss

= ‘Cf(Gconf(Gconv(X&y.s’Xtayt; ef); ad)vdi)
3
= _Z IOg conf(Gconv(Xsymet,y)f;9f);9d>7di>7 ( )

which is optimized with a constrained adversarial objective by computing the
cross entropy between the output predicted dataset labels, and a uniform distri-
bution over dataset labels. D indicates the number of input channels. Our full
method then optimizes the joint loss function

E(ofa 07”7 ed) =L, (Gsigm (Gconv (X37 Ys; of); 97“)7 T)

4
+)\[/f(Gconf(Gconv(XsayS7Xtayt;ef);ed)ad)a ( )

where hyperparameter \ determines how strongly the dataset invariance influ-
ences the optimization; G.ony(-) is a convolution layer function that maps an
example into a new representation; G;gm (-) is a label prediction layer function;
Gaisc(-) and Geon () are the dataset prediction and invariance layer functions.

2.3 Optimization

Similar to classical CNN learning methods, we propose to tackle the optimization
problem with the stochastic gradient procedure, in which updates are made in
the opposite direction of the gradient of Eq. (4) to minimize parameters, and in
the direction of the gradient to maximize other parameters [4]. We optimize the
objective in the following stages.

Optimizing the Label Regressor: In adversarial adaptive methods, the main
goal is to regularize the learning of the source and target mappings, so as to
minimize the distance between the empirical source and target mapping distri-
butions. If so then the source regression model can be directly applied to the
target representations, eliminating the need to learn a separate target regres-
sor. Training the neural network then leads to this optimization problem on the
source dataset:

Z £Z szgm(Gconv (st Ys; ef) 6 ) )} (5)

arg mm{

Ns

Optimizing for Dataset Invariance: This optimization corresponds to the
true minimaz objective (L4 and L) for the dataset classifier parameters and
the dataset invariant representation. The two losses stand in direct opposition to
one another: learning a fully dataset invariant representation means the dataset
classifier must do poorly, and learning an effective dataset classifier means that
the representation is not dataset invariant. Rather than globally optimizing 6,
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and 6¢, we instead perform iterative updates for these two objectives given the
fixed parameters from the previous iteration:

N

o1
arg H;in{_ﬁ Z_: Ly(Gaisc(Geonv(Xs, ¥s, Xt, Yt af); 0a), di)}v (6)
N
1 i
arg I%?X{_N Z £f<Gconf(Gconv(Xsa Ys, Xty Yt ef), ed)a di)}a (7)
=1

where N' = N® 4+ N* being the total number of samples. These losses are readily
implemented in standard deep learning frameworks, and after setting learning
rates properly so Eq. (6) only updates 64 and (7) only updates 6, the updates
can be performed via standard backpropagation. Together, these updates ensure
that we learn a representation that is dataset invariant.

2.4 Detection and Regression for Basal/Apical Slice Position

We denote 7:(75, G, as extracted query features, and ’}:ls, G, as extracted
basal/apical slice representations from SAX and LAX, respectively. In order
to regress basal and apical slices according to query features, we compute the
dissimilarity matrix 6; ; based on ﬂt, Qt and ﬂs, Qs using the volume’s inter-slice

distance as: 6¢,j(7:{t, H,, Gr, QS) = \/(’Fl% — ﬂ%)Q + (Gg - Qg)Q Then, ranking can
be carried out based on the ascending order of each row of the dissimilarity dis-

tance, i.e., the lower the entry value §; ; is, the closer the basal/apical slice and
the query slice are.

3 Experiments and Analysis

Data Specifications: Quality-scored CMR data is available for circa 5,000 vol-
unteers of the UK Biobank imaging (UKBB) resource. Following visual inspec-
tion, manual annotation for SAX images was carried out with a simple 3-grade
quality score [2]. 4,280 sequences correspond to quality score 1 for both ventri-
cles, these had full coverage of the heart from base to apex and were the source
datasets to construct the ground-truth classes for our experiments. Note that
having full coverage should not be confused with having the top/bottom slices
corresponding exactly to base/apex. Basal slices including the left ventricular
outflow tract, pulmonary valve and right atrium, and apical slices with a visi-
ble ventricular cavity were labeled manually. The distance between the actual
location of the basal/apical slice to other slices in the volume were used as train-
ing labels for the regression. We validated the proposed MDAL on three target
datasets: UKBB, DETERMINE and MESA (protocols of the three datasets are
shown in Table1). To prevent over-fitting due to insufficient target data, and
to improve the detection rate of our algorithm, we employ data augmentation
techniques to artificially enlarge the target datasets. For this purpose we chose a



Multi-Input and Dataset-Invariant Adversarial Learning (MDAL) 487

set of realistic rotations, scaling factors, and corresponding mirror images, and
applied them to the MRI images. The set of rotations chosen were —45° and
45°, and the scaling factors 0.75 and 1.25. This increased the number of train-
ing samples by a factor of eight. After data augmentation, we had 2400, and
2384 sequences for DETERMINE and MESA datasets, respectively. For evalu-
ating of multi-view models, we defined two input channels, one for SAX images,
and another for LAX (4-chamber) from the UKBB, MESA and DETERMINE.
The LAX image information was extracted by collecting pixels values along the
intersecting line between the 4-chamber view plane and corresponding short-
axis plane over the cardiac cycle. We extracted 4 pixels above and below the two
plane intersection. We embedded the constructed profile within a square image
with zeros everywhere except the profile diagonal (see Fig. 1b bottom channel).

Table 1. Cardiovascular magnetic resonance protocols for UKBB, MESA and DETER-
MINE Datasets.

Dataset View Number of |Cardiac |\ Matrix Slice Slice gap |Slice Slices per
sequences |phases |[size thickness spacing |volume

UKB SAX |4280 50 208 x 187 |8 mm 2 mm 10 mm |ca. 10
LAX 4280 50 208 x 187 |6 mm n.a n.a 1

MESA SAX |298 20-30 [256 x 160 |6 mm 4 mm 10 mm |ca. 10
LAX 298 20-30 [256 x 160 |6 mm n.a n.a 1

DETERMINE |SAX 300 25 128 x 256 <10 mm (<2 mm |10 mm |ca. 10
LAX 300 25 128 x 256 |6 mm n.a n.a 1

Experimental Set-Up: The architecture of our proposed method is shown in
Fig. 1. To maximize the number of training samples from all datasets, while pre-
venting biased learning of image features from a particular dataset and given
that the number of samples from the UKBB is at least an order of magnitude
larger than from MESA or DETERMINE, we augmented both the MESA and
DETERMINE datasets, to match the resulting number of samples from the
UKBB. This way our dataset classification task will not over-fit to anyone sam-
ple. Our MDAL method processes images with small blocks (120 x 120), which
are crop-centered on the images to extract specific regions of interest. The exper-
iments here reported were conducted using the ConvNet library [3] on an Intel
Xeon E5-1620 v3 @3.50 GHz machine running Windows 10 with 32GB RAM
and Nvidia Quadro K620 GPU. We optimize the network using a learning rate
1 of 0.001 and set the hyper-parameter parameter A to be 0.01, respectively. To
evaluate the detection process, we measure classification accuracy, and to eval-
uate the regression error between the predicted position and the ground truth,
we use the Mean Absolute Error (MAE).
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Table 2. The comparison of basal/apical slice detection accuracy (Mean + stan-
dard deviation) (%) between adaptation and non-adaptation methods, each with single
(SAX)- and multi-view inputs (BS/AS indicate basal/apical slice detection accuracy).
Best results are highlighted in bold.

Dataset No dataset adaptation (BS/AS) With dataset Adaptation (BS/AS)
Single-view [14] Multi-view [14] Single-view [4] Multi-view (Ours)
UKBB 79.0+0.2/76.2+0.3 | 89.24+0.1/92.4+0.2 | 78.2+0.2/75.4+ 0.3 | 88.7+£0.1/91.4+ 0.3
MESA 31.6+0.3/35.1+0.1 | 61.5+0.2/68.3+0.4 | 74.2+£0.2/72.94+0.4 | 87.1£0.3/90.2+0.2
DETERMINE | 48.3 +£0.2/51.14+0.3 | 75.6 £0.3/78.4+0.3 |77.2+0.3/76.5+0.2 | 89.0+0.2/91.24+0.2

Table 3. Regression error comparison between adaptation and non-adaptation meth-
ods, each with single (SAX)- and multi-view inputs for cardiac SAX slice posi-
tion regression in terms of MAE (Mean + standard deviation)(mm)(BS/AS indicate

basal/apical slice regression errors). Best results are highlighted in bold.

Dataset No dataset adaptation (BS/AS) With dataset adaptation (BS/AS)
Single-view [14] Multi-view [14] Single-view [4] Multi-view (Ours)
UKBB 4.32+1.6/5.73+£1.9|3.42+1.1/3.984+1.7|5.134+2.1/6.33+2.3|3.64+1.9/4.02+2.0
MESA 7.78+2.0/834+2.4|647+1.7/6.83+1.4 |4.81+£1.0/5.73+1.5/3.98+1.1/4.07+1.3
DETERMINE | 6.43+1.9/6.814+2.0 | 6.014+1.3/6.17+1.4 |4.73+1.6/4.814+1.3|4.24+1.0/4.45+1.3

Results: We evaluate the performance of the multi-view basal/apical slice detec-
tion and regression tasks with and without dataset invariance (adaptation vs
non-adaptation), by transferring object regressors from the UKBB to MESA and
DETERMINE. To evaluate performance on MESA and DETERMINE, we man-
ually generated annotations as follows: we checked one slice above and below the
detected basal slice to confirm the slice is the basal and record true or false, ditto
for apex. We chose the CNN architecture in [14] for single- and multi-view metrics
with non-adaptation, and the GTSRB architecture in [4] for single-view adaption
method. Table 2 shows the detection accuracy for basal/apical slice of the adap-
tation and non-adaptation from single and multi-view. For both test datasets,
the best improvements are the result of combining both of these features. For
MESA the detection accuracy was increased by 64%, and for DETERMINE
best improvements are of 44% (right-most column). Table 3 shows the average
regression errors of slice locations in millimeter (mm). Even without using the
multi-input channels, our dataset invariance framework is able to reduce the
slice localization error to less than half the average slice spacing found on our
test datasets, i.e., <bmm. With multi-view we reduced the localization errors
to 4.24 and 4.45 mm on average for both basal/apical slices. All the experiences
are significantly different at p < 0.05.

4 Conclusion

In this paper, we have proposed a Multi-Input and Dataset-Invariant Adversarial
Learning (MDAL) framework capable of learning a common image representa-
tion, and using it to detect and localize basal and apical CMR slices, we achieve
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this by: first, using a Dataset-Invariant Adversarial Learning (DIAL) model to
fit the joint distribution over the images from different datasets with a minimax
game. Second, extending the DIAL model to handle multiple view input sce-
narios thereby obtaining better results for Left and Right-Ventricular coverage
estimation in Cardiac MRI. And third, by introducing a regressor network able
to predict the location of basal/apical slices. We evaluated our framework on two
large datasets MESA and DETERMINE and found that our approach signifi-
cantly outperforms state-of-the-art non-dataset-adaptive and single-input meth-
ods. Finally, Our MDAL framework can be easily generalized to any anatomical
structure or image modality.
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