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Abstract. Choroidal neovascularization (CNV), caused by new blood
vessels in the choroid growing through the Bruch’s membrane, is an
important manifestation of terminal age-related macular degeneration
(AMD). Automated CNV detection in three-dimensional (3D) spectral-
domain optical coherence tomography (SD-OCT) images is still a huge
challenge. This paper presents an automated CNV detection method
based on object tracking strategy for time series SD-OCT volumetric
images. In our proposed scheme, experts only need to manually calibrate
CNYV lesion area for the first moment of each patient, and then the CNV
of the following moments will be automatically detected. In order to fully
represent space consistency of CNV, a 3D-histogram of oriented gradi-
ent (3D-HOG) feature is constructed for the generation of random forest
model. Finally, the similarity between training and testing samples is
measured for model updating. The experiments on 258 SD-OCT cubes
from 12 eyes in 12 patients with CNV demonstrate that our results have
a high correlation with the manual segmentations. The average of cor-
relation coefficients and overlap ratio for CNV projection area are 0.907
and 83.96%, respectively.

Keywords: Choroidal neovascularization - 3D-HOG features
Image segmentation - Spectral-domain optical coherence tomography

1 Introduction

CNV is characterized by the abnormal growth of blood vessels in the choroid
layer in age-related macular degeneration (AMD) [1]. Characterization of CNV
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is fundamental in the diagnosis of diabetic retinopathy because it could help
clinicians to objectively predict the progression of CNV or make a treatment
decision. However, this characterization relies mainly on the accurate detection
and their properties, such as area and length. Apart from the challenging and
time-consuming, CNV owns more complicated structure characteristics [2]. Thus,
effectively automated CNV detection and segmentation are able to assist CNV
clinical diagnosis vastly.

Currently, the optical coherence tomography angiography (OCTA) is a novel
evolving imaging technology which utilizes motion contrast to visualize retinal
and choroidal vessels. It can provide more distinct vascular network that is used
to visualize and detect CNV [3]. Additionally, several CNV segmentation meth-
ods only target at fluorescein angiography (FA) image sequences [4]. For the
quantitative analysis of CNV in OCTA, Jia et al. [5] manually calculated the
CNV area and flow index from two-dimensional (2D) maximum projection outer
retina CNV angiogram in AMD patients. Recently, for the purpose of calculating
the vessel length of CNV network in OCTA, they developed a level set method
to segment neovascular vessels within detected CNV membrane, and a skeleton
algorithm was applied to determine vessel centerlines [6]. Zhu et al. [7] proposed
a CNV prediction algorithm based on reaction diffusion model in longitudinal
OCT images. Xi et al. [8] learned local similarity prior embedding active contour
model for CNV segmentation in OCT images.

Most of CNV quantitative evaluation methods above are two-dimensional
(2D) and only suitable for FA [4] or OCTA [5]. In this paper, we presented
an automated CNV detection method based on three-dimensional histogram of
oriented gradient (3D-HOG) feature in time series spectral-domain optical coher-
ence tomography (SD-OCT) volumetric images. In summary, our contributions
in this paper can be highlighted as: (1) A CNV detection method based on object
tracking strategy was proposed for time series SD-OCT images. (2) A 3D-HOG
feature was constructed for CNV detection in SD-OCT volumetric images. (3)
Aiming at the characteristic changes of CNV along with drug treatment and
time variation, a model updating method is proposed.

2 Method

2.1 Method Overview

The whole framework of our method is shown in Fig. 1. In the stage of image
pre-processing, noise removal and layer segmentation are performed on each B-
scan. Consequently, we divide patches into positive and negative samples and
extract 3D-HOG features. Finally, random forest is utilized to train a prediction
model. In the testing phase, we first measure the similarity between the testing
and training images. If they are similar, we extract 3D-HOG feature and use the
trained model to directly predict the location of CNV. Otherwise, the detection
results from the previous moments are utilized to update the training samples,
and then to obtain the final detection results.
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2.2 Preprocessing

To reduce the influence of speckle noise on the layer segmentation, this paper uses
bilateral filter to remove noise. Then, we segment internal limiting membrane
(ILM) and Bruch membrane (BM) layers based on gradual intensity distance
to restrict the region of interest (ROI). Figure 2 shows the preprocessing, where
the red and green lines are the ILM and BM layers (Fig. 2(c)), respectively. The
blue rectangle in Fig. 2(d) represents the ROI, which is the minimum rectangle
containing ILM and BM.
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Fig. 2. Preprocessing for one normal and one CNV (second row) SD-OCT images.

2.3 Classification of positive and negative samples

Longitudinal data from 12 eyes in 12 patients with CNV at the First Affiliated
Hospital with Nanjing Medical University were included in this paper. Experts
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manually draw CNV region as the ground truth. The ROIs of each B-scan are
extracted to construct training data using sliding window method, and then we
can extract 3D HOG features from the ROIs. Experiment has proved 64 x 128
(width height) is the best image size for extracting HOG feature [9]. Therefore,
we resize all the preprocessed images to 512 x 128. For the z (azimuthal) direc-
tion, the slide window size is 1, which means that three continuous B-scans are
selected.

As shown in Fig. 3(a), the size of sample is 64 x 128 x 3. For the x direction,
the optimum step size is 16. Tiny step size will lead to high similarity between
training samples, which will reduce the efficiency and increase time cost. On the
contrary, it will affect the accuracy of detection. If the training sample is within
the red manual division line we mark it as the positive sample. In contrast, we
mark it as the negative sample (Fig.3(b)). However, when the sliding window
contains positive and negative samples (the yellow rectangle in Fig.3(b)), we
mark it as the positive sample if the number of columns containing CNV exceeds
the half width of the sliding window, the negative sample or not. Based on the
above procedures, we will get 3712 training samples for each SD-OCT volumetric
image.

z(azimuthal)

Negative sample | Positive sample

x(lateral)
—

(a) Sample construction (b) Positive and negative samples

Fig. 3. Construct training samples.

2.4 3D-HOG Feature Extraction

HOG descriptors provide a dense overlapping description of image regions [9].
The main idea of HOG feature is that the appearance and shape of local objects
can be well described by the directional density distribution of gradients or
edges. In this paper, we extend the traditional HOG feature from 2D to 3D by
considering adjacent pixel information more effectively. The basic process is as
follows:

amma space standardization. We firstly normalize the input image wi
1) G tandardization. We firstl lize the input i ith
Gamma standardization to adjust image contrast, reduce the influence of
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local shadows, and suppress the noise interference.
I(z,y,2) = I(z,y, z)¢emma (1)

where Gamma is set to 0.5 here.
(2) Image gradient calculation. Then the gradient magnitude is computed by:

G, 2) = /Galw,y,2)2 + Gy (2,9, 2)2 + Ga(,y, ) (2)

where G (x,v, 2), Gy(z,y, 2) and G, (z,y, z) represent the image gradients along
the x, y and z directions, respectively.

In 2D images, we only need to calculate the gradient direction in x-y
plan. However, the gradient direction in x-z plan can also be calculated in 3D
images. Considering computational complexity, gradient information in y-z plan
is ignored. Then the gradient direction in the x-y and x-z plans are calculated

LY,

" o(z,y) = tan™" ( Ex . ;) (3)
a(z,z) = tan™! ( Ex 2 ;) (4)

K y’

(3) Construction of gradient orientation histogram. Firstly, the gradient direc-
tion of each cell will be divided into 9 directions in x-y and x-z plans. Hence,
there are 81 bins of histogram to count the gradient information in each
cell. In this way, each pixel in the cell is graded in the histogram with a
weighted projection (mapped to a fixed angular range) to obtain a gradi-
ent histogram, that is, an 81-dimensional eigenvector corresponding to the
cell. The gradient magnitude is used as the weight of the projection. Then,
the feature vectors of all cells in a block are concatenated to obtain the
3D-HOG feature. Finally, 3D-HOG features from all overlapping blocks are
concatenated to the ultimate features for random forest classification.

2.5 Similarity measurement and model update

For each patient, the CNV characteristic will change along with the medication
and time. Therefore, it is necessary to update the trained random forest model.
Since OCT volumetric images at different moments will shift, we use en face
projection images rather than B-scans to measure the similarity between the
training and testing cubes.

Because the brightness, contrast, and structure of the projection image will
change along the diversification of CNV, structural similarity index (SSIM) [10]
is suitable for similarity measure between projection images. If the similarity
between the current and first projection images is larger than the average simi-
larity, we extract 3D-HOG feature and use the trained model to directly predict
the location of CNV. Otherwise, the detection results from the previous moment
are utilized to construct the training samples in which the corresponding predict
probability in the detection result is over 90%. Then the previous trained model
is refined with new training data to obtain the final CNV detection results.
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2.6 Post-processing

The width of sliding window (Fig.3(a)) will influence the accuracy of CNV
detection. If we reduce the width, the detection accuracy will also be reduced
due to high similarity between training samples. To make the detected CNV
boundary smoother, the tradeoff between the CNV boundaries of two adjacent
cubes is taken as the new CNV boundary of the current cube.

3 Experiments

Our algorithm was implemented in Matlab and ran on a 4.0 GHz Pentium 4
PC with 16.0 GB memory. We obtained 258 SD-OCT volumetric image datasets
from 12 eyes in 12 patients with CNV to quantitatively test our algorithm. The
SD-OCT cubes are 512 (lateral) x 1024 (axial) x 128 (azimuthal) corresponding
to a 6 x 6 x 2mm3 volume centered at the retinal macular region generated with
a Cirrus HD-OCT device.

We quantitatively compared our automated results with the manual segmen-
tations drawn by expert readers. Five metrics were used to assess the CNV
area differences: correlation coefficient (cc), p-value of Mann-Whitney U-test
(p-value), overlap ratio (Overlap), overestimated ratio (Overest) and underesti-
mated ratio (Underest).

3.1 Quantitative Evaluation

Table1 shows the agreement of CNV projection area in the axial direction
between our automated result and the ground truth. From Tablel, we can
observe that the correlation coefficient (0.9070) and overlap ratio (83.96%) are
high for CNV projection area. The low p-value (<0.05) indicates that there
are significant differences in the segmented CNV projection area between our
automated method and the manual rater. The overestimated ratio (8.95%) and
underestimated ratio (7.10%) are similar.

Table 1. Correlation coefficients (cc), p-value, Overlap, Overestimated and Underes-
timated between our detections and the expert detections for CNV projection area.

cc (mean,std) | p-value | Overlap[%] (mean,std) | Overrest[%] (mean,std) | Underrest[%)] (mean,std)

0.90 +0.082 0.016 83.96 £ 9.05 8.95+6.23 7.10 £4.23

3.2 Qualitative Analysis

Figure 4 shows the CNV detection results in B-scan where the green transparent
areas represent our automated detection results and the red lines are the manual
segmentation. Due to the complex characteristic of CNV, it is difficult for the
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Fig. 4. CNV detection results and each image represents different example of patients.

CNYV detection. However, our proposed method is effective to deal with many dif-
ficulties, such as (1) non-uniform reflectivity within CNV ((a)(c)(d)(1)), (2) blur
and obscure CNV up boundary ((¢)(i)(k)(1)), (3) invisible CNV down boundary
(a)—(e) and (g)—(1), (4) influence of other retinal diseases (cystoid edema (c),
hyper-reflective foci (g), and neurosensory retinal detachment (h) (j)), and (5)
the great difference of CNV sizes ((e)(j)).

Because our detection precision is high and robust in B-scan images, we can
also obtain a relatively high segmentation precision in their projection images.
Figure5 shows the CNV projection images collected at 25 time points of one

Fig. 5. CNV projection images with result of our method and expert manually for the
right eye of a patient for 25 imaging dates between 2013 and 2015.
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patient in two years, corresponding to Fig.4(a). In Fig. 5, the red lines are the
manual segmentation and the green lines are our segmentation in the projection
images. It can be seen from Fig. 5 that our automated CNV detection is similar
with the manual segmentation.

4 Conclusions

In this paper, we presented an automated CNV detection method based on object
tracking strategy for time series SD-OCT volumetric images. In order to fully
represent space consistency of CNV in SD-OCT volumetric images, 3D-HOG
features are conducted for CNV classification. We update random forest models
persistently to make our model more robust, which can improve the accuracy
of detection. According to the CNV detection results in B-scans, quantitative
evaluation is performed on OCT projection images. The experiments on 258
SD-OCT volumetric images with CNV demonstrate that our method is effective
and can achieve a high correlation with the manual segmentations.
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