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Abstract. In this paper, we propose a novel image processing method,
DeepHCS, to transform bright-field microscopy images into synthetic flu-
orescence images of cell nuclei biomarkers commonly used in high-content
drug screening. The main motivation of the proposed work is to automat-
ically generate virtual biomarker images from conventional bright-field
images, which can greatly reduce time-consuming and laborious tissue
preparation efforts and improve the throughput of the screening process.
DeepHCS uses bright-field images and their corresponding cell nuclei
staining (DAPI) fluorescence images as a set of image pairs to train
a series of end-to-end deep convolutional neural networks. By leverag-
ing a state-of-the-art deep learning method, the proposed method can
produce synthetic fluorescence images comparable to real DAPI images
with high accuracy. We demonstrate the efficacy of this method using
a real glioblastoma drug screening dataset with various quality metrics,
including PSNR, SSIM, cell viability correlation (CVC), the area under
the curve (AUC), and the IC50.

1 Introduction

A glioblastoma (GBM) is a brain tumor that is commonly found in the cerebral
hemisphere of the brain. GBM is considered an obstinate brain tumor because
even after medical advances in the past few decades, no effective treatment has
been discovered that greatly improves life expectancy in patients. When patients
are diagnosed with a GBM, in most cases, the best treatment option is surgery
to eliminate as many tumor cells as possible. In addition to surgical treatments,
patient-specific chemotherapy by analyzing patient-driven GBM tumor cells to
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Fig. 1. DeepHCS eliminates the cell fixation and staining progress in the original HCS
workflow and generates corresponding fluorescence image based bright-field image by
Operetta. DeepHCS can keep the cells alive during the entire progress.

find the most effective drug for the target patient, called precision medicine,
has become popular. High-throughput screening (HTS) and high-content screen-
ing (HCS) have demonstrated their effectiveness in precision medicine in recent
studies [2,8]. Both approaches for precision medicine involve readouts of various
drug responses to patient-derived cell cultures. Among them, HCS uses high-
throughput imaging and automatic image analysis to evaluate changes in the
phenotype of the whole cells, such as counting the number of living cells ver-
sus dead cells, measuring the size of the cells, comparing the shape of the cells,
etc. In HCS, multiple imaging modalities are commonly used together to image
various aspects of the cell phenotypes (Fig. 1). Such imaging modalities include
bright-field and fluorescence microscopy, in which the former can capture the
overall morphology of the cells, while the latter can image various fluorescent
biomarkers. One advantage of using bright-field images in HCS is its ability to
acquire a photographic record of cells without any extra preparation while flu-
orescence images require time-consuming cell fixation and staining procedures.
Another advantage of the bright-field image method is its ability to capture the
dynamics of cells because cell fixation and cell staining are not required (Fig. 1
lower row). However, fluorescence imaging can capture only a snapshot of the
cells at any given point in time because cells die during fixation and staining
(Fig. 1 upper row).

There have been many research efforts to develop image processing tech-
niques for bright-field imaging to extract cell phenotypes without fluorescence
imaging. Selinummi et al. [9] used multi-focal bright-field images to extract the
shape of cells without whole cell fluorescence images. Their method calculates
the intensity variation along the z-stack of multi-focal bright-field images to
robustly detect cell boundaries. Ali et al. [1] proposed detection and segmenta-
tion of adherent HT1080 and HeLa cells from bright-field images. This method
extracts local phase and local orientation from multi-focal bright-field images
using the monogenic single framework to guide the evolution of the active con-
tour. Tikkanen et al. [10] employed a machine learning approach using the his-
togram of oriented gradient (HOG) [3] feature for detecting cells in 25 focal
images. The extracted features and their neighboring intensity histograms are
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combined for classification using a support vector machine (SVM). Liimatainen
et al. [6] employed a logistic regression with a �1 penalty to classify the location
of cells and non-cells using the intensity values from 25 focal images as features.
However, most previous work focused only on cell segmentation and detection
directly from bright-field images, and no state-of-the-art deep learning meth-
ods are leveraged. In addition, in spite of ongoing research efforts in bright-field
image analysis, the standard HCS workflow still relies on detecting and analyzing
biomarkers presented in fluorescence images.

Based on these observations, we propose DeepHCS, a novel data-driven image
conversion technique for high-content screening. Unlike most existing methods
that directly analyze bright-field images, DeepHCS converts bright-field images
to fluorescence images as accurately as possible using end-to-end convolutional
neural networks. By doing this, DeepHCS effectively avoids the time-consuming
and laborious cell preparation process for generating biomarkers while provid-
ing accurate image analysis results by using the well-established conventional
HCS workflow (Fig. 1 bottom row). We evaluate the accuracy of DeepHCS using
widely used image quality metrics (e.g., PSNR and SSIM). In addition, we com-
pare cell viability [4], the area under curve (AUC) and the IC50 of the results
and real DAPI images to demonstrate that DeepHCS can replace the tissue
preparation and fluorescence imaging process in the conventional HCS workflow
with the software-based image conversion process.

Fig. 2. Overview of data acquisition and preprocessing: (a) layout of a 384-well plate,
(b) nine overlapped images for a single well, (c) before and after stitching images (yellow
line on the left is the border between adjacent images)

2 Method

2.1 Data

We acquired the image data from patients who had been diagnosed with a GBM
brain tumor. The GBM tumor cells were divided evenly into a 384-well plate
organized into a 24× 16 grid (Fig. 2a) and stained with Hoechst 33342 solution.
For drug screening, biologists added various FDA-approved drugs into the wells.
Each drug was administered to a 1× 8 column, starting with a 20µ/mol dosage
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and tripling the dosage in each subsequent well (green box of Fig. 2a). The
last wells in the 1 × 8 column contained no drugs and were used as a control
(blue box of Fig. 2a). Each well was imaged with the Operetta CLSTM high-
content analysis system equipped with an high resolution 14bit CCD camera
for cell imaging and the Harmony 3.5 software. Nine-field image montage per
well (Fig. 2b) is generated by using an image stitching algorithm (Fig. 2c). The
resolution of each image is 1360 × 1024 pixels. We took images from various
locations with different drug dosages and evenly distributed cells, and made
pairs for training set in which each pair consists of a bright-field image and its
fluorescence nuclei image.

Fig. 3. DeepHCS consists of two sub-networks: a Transformation Network (green box);
and a Refinement Network (pink box). Convolution layers (blue layer) include ReLU
as a non-linear function. Residual blocks (purple layer) consist of three identical con-
volution layers. All filter sizes used in this system are 3 × 3.

2.2 Proposed Method: DeepHCS

DeepHCS is built upon two deep neural networks, Transformation Network (TN)
and Refinement Network (RN) (see Fig. 3).
Transformation Network is the first part of DeepHCS, consisting of two sets
of FusionNet variant networks [7]. The first network in the TN is used to gradu-
ally transform the input bright-field image into the intermediate feature image,
and the second network in the TN is used to actually perform the translation
into the DAPI fluorescence image. The first network in the TN can effectively
expand the depth of the network when the size of the input is relatively small,
and adequately performs drop-out in which 16 feature maps are merged into one
feature map at the end. The second network in the TN has more neuron weights
by using residual blocks and actually translates the input image into DAPI flu-
orescence images. The number of filters in the entire network is expressed under
each layer in Fig. 3.
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Fig. 4. Refinement Network improves the cell shapes and restores missing cells. A false
positive (top row) and a false negative (bottom row) from the TN are corrected by
the RN.

Refinement Network is the second part of DeepHCS and is designed to
improve the image quality of the translated result from the TN in terms of
the noise and the cell shape. In contrast to the TN, the RN takes a concate-
nation of the translated TN result and the input bright-field image of the TN,
which provides a clue to rectify errors in the translated image generated by the
TN. For example, as shown in Fig. 4, the RN can improve the cell shapes and
restore falsely removed cells. Another benefit of using the concatenated input
image is to help reducing the gradient-vanishing problem caused by the black
background in the translated result by the TN.

Loss Function. For the TN, the mean-square error (MSE) is used to define the
loss function to measure the pixel-wise error between the ground truth and the
output image of the TN, as follows:

LTN (x) =
1
n

n∑

i=1

(ŷi − yi)2 (1)

where x is the input bright-field image, yi is the real fluorescence image, and ŷi
is the output of the TN. For the RN, the mean-absolute error (MAE) and the
SSIM are used as the loss function to deal with the shape of cells and the pixel
intensity at the same time. The MAE is define as follows:

LMAE(x̂, y) =
1
n

n∑

i=1

|ri − yi| (2)

where x̂ is the concatenation of the translated result of the TN and the input
bright-field image, and ri is the output of the RN. In contrast to the TN, we
employed the MAE to handle the translated result of the TN because the MSE
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penalizes larger errors and is more tolerant to smaller errors. The SSIM is defined
as follows:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(3)

where μx and σx represent the mean and the variance of image x, respectively;
σxy represents the covariance of image x and y, and c1 and c2 are two constant
variables for division stability. Based on Eq. 3, we can measure the degree of
structural change in the image and additionally recognize the difference between
the two images based on luminance and contrast. The SSIM values range between
0 and 1; therefore, we defined the loss function using the SSIM as follows:

LSSIM (x̂, y) =
1
n

n∑

i=1

1 − SSIM(ri, yi) (4)

By combining the two error measures, we can define the loss function for the
RN as follows (α is empirically set to 0.8):

LRN (x̂) = (1 − α) · LMAE(x̂, y) + α · LSSIM (x̂, y) (5)

3 Results

We used the training set consisting of 2,860 pairs of bright-field images and their
corresponding fluorescence images, each measuring 256×256 pixels (we cropped
the center of each image to reduce boundary effects). To validate DeepHCS, we
used eight cases (C1 to C8), including either 1,386 or 2,646 images.

Table 1. Accuracy of the proposed method for eight test cases.

C1 C2 C3 C4 C5 C6 C7 C8

PSNR 33.91 33.90 33.79 33.93 38.52 39.04 38.65 38.46

SSIM 0.75 0.75 0.74 0.75 0.87 0.88 0.87 0.87

CVC 0.8663 0.9064 0.8794 0.8865 0.9583 0.9625 0.9673 0.9702

To assess the quality of the images generated by DeepHCS, we used two
image error metrics (PSNR and SSIM) and cell viability correlation (CVC) that
measures the similarity between the actual and generated DAPI fluorescence
images using R2 correlation, as shown in Table 1. In the experiment, we achieved
an average of 0.9092 and a maximum of 0.9702 correlation with the ground truth.
In addition, the shape of the cells and the status of the cells (living or dead) are
clearly distinguished as shown in Fig. 5.
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Fig. 5. (a) Ground truth fluorescence image, (b) the result of our method. Zoom-in
shows the similarity of the cell shapes between the ground truth and ours.

To further demonstrate the feasibility of DeepHCS for replacing biomarker
generation in the conventional HCS workflow, we used seven other cases for the
validation test. Figure 6 shows the correlation of real DAPI images and our syn-
thetic fluorescence images in terms of AUC and IC50, respectively. In addition,
the responses of two anti-cancer drugs (AMG232 and RG7112) measured by
AUC and IC50 are also shown using heatmaps; clear separation of two groups
in drug responses are identically shown in DAPI images and ours. These results
confirm that the images generated by DeepHCS can be used to compute AUC
and IC50 for the estimation of drug responses, which shows potential to replace
the conventional fluorescence imaging process in the HSC workflow.

Fig. 6. Comparison of AUC and IC50 values from the real DAPI images (ground truth)
and our results from the seven patients’ data. The heat maps show the drug response
(green is low, and red is high).

Finally, we compared DeepHCS with the latest GAN-based image transla-
tion method used in the Pix2Pix network [5]. As shown in Fig. 7, DeepHCS
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reproduces cell images close to real DAPI images while Pix2Pix fails to accu-
rately generate cell shapes in some cases. The GAN attempts to approximate the
data distribution of the training set as much as possible; therefore, the recon-
structed images look like cell images. However, this does not imply that the
reconstructed image satisfies the accuracy up to the HCS analysis. Even though
Pix2Pix learns the morphological characteristics in the cell image by minimizing
the �1 distance from the ground truth, it is not enough to satisfy this problem.

Fig. 7. (a) Ground truth fluorescence image, (b) the results of the proposed method,
(c) the results of the Pix2Pix network [5]. The results are generated after 300 training
epochs. Our method can generate most of cell structures close to the ground truth.

4 Conclusion

In this paper, we introduced DeepHCS, a novel deep end-to-end convolution
neural network for generating DAPI fluorescence images directly from bright-
field images. We showed that the DeepHCS can generate results similar to real
DAPI images and outperforms state-of-the-art image translation methods. The
proposed method demonstrates the potential to reduce the laborious biomarker
preparation process and to improve the throughput of the large-scale image-
based drug screening process using deep learning. In the future, we plan to apply
the proposed method to time-lapse bright-field images, and assess the efficacy of
generating other biomarker images.
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