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Abstract. Automated microscopic analysis of stained histopathologi-
cal images is degraded by the amount of color and intensity variations
in data. This paper presents a novel unsupervised probabilistic approach
by integrating a convolutional neural network (CNN) and the Gaussian
mixture model (GMM) in a unified framework, which jointly optimizes
the modeling and normalizing the color and intensity of hematoxylin-
and eosin-stained (H&E) histological images. In contrast to conventional
GMM-based methods that are applied only on the color distribution of
data for stain color normalization, our proposal learns how to cluster the
tissue structures according to their shape and appearance and simultane-
ously fits a multivariate GMM to the data. This approach is more robust
than standard GMM in the presence of strong staining variations because
fitting the GMM is conditioned on the appearance of tissue structures
in the density channel of an image. Performing a gradient descent opti-
mization in an end-to-end learning, the network learns to maximize the
log-likelihood of data given estimated parameters of multivariate Gaus-
sian distributions. Our method does not need ground truth, shape and
color assumptions of image contents or manual tuning of parameters and
thresholds which makes it applicable to a wide range of histopathological
images. Experiments show that our proposed method outperforms the
state-of-the-art algorithms in terms of achieving a higher color constancy.
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1 Introduction

Computational histopathology involves computer-aided diagnosis (CAD) for
microscopic analysis of stained histopathological slides to study presence, local-
ization or grading of disease. Manual staining by adding contrasting dyes prior
to microscopic imaging is a common clinical practice. Such a non-quantified man-
ual procedure causes significant variations in tissue intensity and color, which also
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originate from other factors such as imaging device characteristics. Such unde-
sirable effects become more problematic when different laboratories share digital
images [1]. A well-known approach for compensating the color variations is apply-
ing color normalization techniques. Recent studies show that color normalization
as preprocessing stage leads to a higher performance in a CAD system [2]. To do so,
several methods are investigated [1,3–9]. The proposed approaches can be divided
into two categories:stain-color deconvolution and template color matching, which
are first briefly explained below, and then we describe our contributions.

Stain-color deconvolution [10] methods are considering prior knowledge of
the reference stain vector for every dye and split an input RGB image into three
stain channels, each representing the actual stain color. Ruifrok et al. [10] intro-
duce this prior knowledge by manually selecting pixels that represent a specific
stain class and then compute the color deconvolution vector. Because of the semi-
automatic nature, several studies are performed later for automated extraction
of stains by e.g. using the singular value decomposition (SVD) technique [6],
probabilistic Gaussian mixture model (GMM) [8], using a prior for stain matrix
estimation [3] and stain color descriptions along with training a supervised rele-
vance vector machine [4]. Although these solutions lead to a better stain estima-
tion, they solely limited to image color information, while the spatial dependency
among tissue structures has been ignored [1]. This causes shortcomings for stain
deconvolution approaches when severe staining variations occur in the data.

Template color matching methods proposed by Reinhard et al. [5] rely on
aligning the statistical color distribution (e.g. mean and standard deviation) of
a source image with a template image. The authors used a set of linear transfor-
mations for assigning a unimodal distribution to each channel of the CIELAB
color model. Afterwards, each channel was treated independently for alignment.
Since there is a dependency between the color channels due to dye contribution,
this approach has drawbacks which have been addressed in [1,4]. For solving
this problem, separate transformations are performed on stain classes [8], or on
tissue classes [1,9]. For avoiding artifacts at the border of different classes under
different transformations, a weighted contribution of these transformations in
the final color image is considered. Two proposed solutions consist of estimating
weights of the GMM [8] and training a naive Bayesian classifier [1]. This solution
introduce multiple parameters and thresholds which cannot be optimally applied
to a new dataset or even fail if the tissue type changes.

Regarding to [8,9], we propose a stain-color normalization method based on
GMM but with a different approach. Our contribution is threefold. First, we intro-
duce a new unsupervised stain-color normalization method based on deep con-
volutional Gaussian mixture models (DCGMM). Our proposal benefits from a
convolutional neural network (CNN) for performing soft-assignment clustering
of tissue structures in an unsupervised manner. Second, in contrast to the pre-
vious GMM-based color normalization methods that work on color point-clouds
by considering each pixel independently in input space, our method fits a GMM
to an input color image with processing and involving the visual contents, such as
the appearance and shape of regions in the image intensity (density) channel by
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means of the CNN. Such an approach outperforms the previous methods specif-
ically when strong staining variations appear in the data (see Fig. 1). This out-
come occurs because our method is independent from the chromatic information
for tissue class assignment and consequent distribution modeling. Finally, instead
of using a common expectation-maximization (EM) algorithm for optimizing the
GMM, we introduce an end-to-end learning procedure for optimizing the param-
eters of the CNN and the GMM together. To our knowledge, it is the first time
that this approach is used for training a DCGMM.

Fig. 1. Example of standard GMM failure in tissue clustering using HSD color space;
(a) RGB H&E image; (b) 3-class standard GMM; (c) 3-class DCGMM.

2 Methods

We first provide a brief overview of the standard GMM method and introduce
the notation used in the paper. Afterwards, we introduce our DCGMM method.

Gaussian Mixture Model of data (x), can be presented as a linear super-
position of K Gaussian mixtures in terms of discrete latent variables (z), in the
form of

p(x) = ΣK
k=1πkN (x|μk,Σk). (1)

The K-dimensional binary random variable z has one-hot encoding (zk ∈ {0, 1};
ΣK

k=1zk = 1), which represents the tissue class in our study. In Eq. (1), the
mixing coefficients πk must satisfy 0 ≤ πk ≤ 1 together with ΣK

k=1πk = 1, in
order to fulfill a valid probability definition [11]. Here, N stands for a multivariate
normal distribution with mean μk and covariance matrix Σk. If we consider πk

as prior probability of class zk, its posterior probability called responsibility can
be written as follows [11]:

γ(zk) = p(zk = 1|x) =
πkN (x|μk,Σk)

ΣK
j=1πjN (x|μj ,Σj)

. (2)

According to Eq. (1), the (natural) log-likelihood function for an image (X ={
x1,x2, ...,xN

}
) with total number of pixels (observations) equal to N is

ln p(X|π,μ,Σ) = ΣN
n=1 ln{ΣK

k=1πkN (x|μk,Σk)}. (3)
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Given the GMM, the goal is to maximize the likelihood function (Eq. (3)) with
respect to the parameters (μk, Σk, πk). The common approach for this is using
the EM algorithm by iteratively evaluating the responsibilities (Eq. (2)) and
re-estimating the parameters.

Fig. 2. Block diagram of DCGMM in training phase.

Deep Convolutional GMM (DCGMM): The recent development of deep
generative models has invoked some extensions to the standard GMM [12,13].
Two proposed approaches are (1) constructing a stack of multiple GMM layers
on top of each other in a hierarchical architecture [13] that is optimized by EM-
based algorithm and (2) using auto-encoder neural networks while applying the
GMM on their low-dimensional representations [12] that has been studied for
unsupervised anomaly detection. This paper presents a different extension to the
standard GMM by introducing the DCGMM that is a fully-convolutional CNN
of which the parameters are optimized to fit a GMM to the input image, in an
end-to-end learning, using gradient descent and back-propagation algorithms.

We aim to fit a GMM to the pixel-color distribution conditioned on tis-
sue classes. For processing the image and detecting the tissue classes, the high
capability of the CNN has been exploited. To do so, estimating the responsibil-
ity coefficients (Eq. (2)) is performed by a CNN. For a better understanding,
one can consider that the E-step in an EM-based optimization is replaced by
a CNN. However, all parameters of the GMM and CNN are jointly optimized
by the gradient descent algorithm. In the DCGMM, the negative log-likelihood
(maximizing Eq. (3)) is used as the loss function.

Our color normalization algorithm can be split into two phases, training the
DCGMM and the color transformation (inference). In the training phase, we fit
a GMM to the data. After the training stage is finished and in inference mode,
the template image and source image are separately supplied to the model. Con-
sequently, the parameters of the fitted Gaussian distributions and their mixture
coefficients (π) are computed in those two images. Afterwards, the multivariate
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Gaussian distributions of the source image are transformed (aligned) to have sim-
ilar parameters of distributions as the template image, while π is kept unchanged.
In the rest of this section, we explain these two phases in detail.

Fitting Gaussian Distribution to Data: First the RGB color values are
transferred to the hue-saturation-density (HSD) color system [14]. In a HSD
model of histopathological images, the density channel (D) is linearly related to
the amount of stain while the other two chromatic channels are independent. This
property suits well to the analysis of transmitted light microscopy, compared to
the alternative color spaces [1]. We only use the normalized to zero-mean (cen-
tered) density channel as the input to the network. Ignoring the chromatic infor-
mation and only clustering the tissue structures according to their appearance
(normalized density channel), alleviating the effect of strong staining variations
in images. The proposed CNN has a fully-convolutional architecture, consist-
ing of several convolutional layers, rectified linear units (ReLU) as nonlinearity
functions and (un)pooling operators. The reduced image size after applying two
stages of max-pooling returns back to it original size by applying un-pooling
operations. After the last convolutional layer, there is a softmax layer. The net-
work aims to estimate the responsibility values (see Eq. (2)) for each pixel in the
input image. Using the softmax layer at the output of the network guarantees
the constraint of ΣK

k=1γk = 1. Since we are working on H&E histopathologi-
cal images, each pixel in the image mostly belongs to one out of three clusters
(K = 3): hematoxylin, eosin and background (not stained). Because the biolog-
ical composition of tissue related to each pixel in the image leads to a varying
stain absorption ratio between pixels, the color of each pixel can be presented by
a weighted sum of the different stains used. This property can be reflected in the
responsibility coefficient (γ) of a GMM, which is estimated in the softmax layer
of the network in our proposed model. The calculation of the required partial
derivatives of negative log-likelihood (loss function) with respect to its parame-
ters (π,μ and Σ) for performing a gradient descent algorithm can be found in
[15, p. 45].

Algorithm 1. DCGMM training (left) and inference (right) algorithm
θnet ← random CNN parameters

repeat
X ← input image

Xh,Xs,Xd ← HSD(X)
γ ← fnet(X̄d, θnet) � (1)
Nk ← ΣN

n=1γ(znk) � (2)
μk ← 1

Nk
ΣN

n=1γ(znk)xn � (3)

Σk ← 1
Nk

ΣN
n=1γ(znk)(xn − μk)(xn − μk)T � (4)

πk ← Nk
N

� (5)
L ← −ΣN

n=1 ln{ΣK
k=1πkN (x|μk,Σk)} � loss

θnet
+← −∇θnet(L)

until stopping criterion

Xt
h,s,d ← HSD Template image

γt, μt, Σt, πt ← Ops.(1-5)

Xs
h,s,d ← HSD Source image

γs, μs, Σs, πs ← Ops.(1-5)

for k:=1 to K step 1 do

Y ← Xs
k − μs

k � Centering

ΦsΛsΦs−1 ← Σs
k � SVD

Z ← Λs− 1
2 ΦsTY � Whitening

ΦtΛtΦt−1 ← Σt
k � SVD

Xnew
k ← ΦtΛt

1
2 Z + μt

k

end for
Xnew ← ΣK

k=1[γ
s
k ◦ Xnew

k ]
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Table 1. Standard Deviation (SD) and Coefficient of Variation (CV) of NMI for all
five laboratories for hematoxylin and eosin dyes.

Although the responsibility term is estimated by the CNN from only the
density channel of the image, the mean and covariance matrices (μk and Σk)
are estimated from all three channels of the HSD color image. The randomly
initialized parameters of the CNN are updated by ADAM gradient-based opti-
mization with a fixed learning rate of 10−3. The scheme of our model is depicted
in Fig. 2.

Transformation of Multivariate Gaussian Distributions: By training the
model in the color normalization task, two GMMs are fitted to the source and
template images, individually. Afterwards, a set of transformations are applied
to align the multivariate Gaussian distributions between the source and the tem-
plate. These transformations consist of three operations: mean centering, whiten-
ing and coloring transformation. Let us assume that (μs,Σs) and (μt,Σt) are
the estimated parameters of the two distributions in source and template image,
respectively. By shifting the mean of source image to the origin (centering) and
then whitening which involves the SVD algorithm, the source image will have
a zero mean and an identity covariance matrix. Consequently, by applying a
coloring transformation which is the inverse of whitening but after replacing
the eigenvalues (Λ) and eigenvectors (Φ) of source distribution with the tem-
plate distribution, the whitened Gaussian distribution of source image scales and
rotates to have the same covariance matrix as the template image (Σt). Finally,
the distribution is shifted to obtain the same mean as the template distribution.
For clarifying this procedure, pseudocode in Algorithm 1 shows these steps in
detail.

3 Experimental Results

Histopathology Image Dataset: We focus on inter-laboratory variations of
the H&E staining, as it is a major concern in large-scale application of CAD in
pathology. For better comparison with recent studies, we use the same dataset
as has been introduced in [1]. The dataset contains 625 images (each 1388×1040
pixels) from 125 digitized H&E stained WSIs of lymph nodes from 3 patients
and was collected from five Dutch pathology laboratories, each using their own
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routine staining protocols (more details can be found in [1]). Our model is trained
on randomly cropped patches (576 × 576 pixels) and evaluated on full-sized
images by using leave-one-out cross-validation based on the above laboratories.

Results: We trained the DCGMM on the dataset. The model easily converges
in a few minutes. The inference computation time for each image in its original
size (1388 × 1040 pixels) is about 0.6 s, implemented in the TensorFlow library
and running on a TITAN Xp GPU. The performance of our method is compared
to that of five competing state-of-the-art algorithms: linear appearance normal-
ization by Macenko et al. [6], statistical color properties alignment by Reinhard
et al. [5], nonlinear mapping for stain normalization by Khan et al. [4], sparse
non-negative matrix factorization by Vahadaneet al. [7] and WSI color standard-
izer by Bejnordi et al. [1]. The normalized median intensity (NMI) measure [1,9]
is used to evaluate color constancy of normalized images. Quantitative analysis
is based on independently evaluating the color constancy in the regions that
show mostly absorbed hematoxylin or eosin. Since nuclei mostly absorb hema-
toxylin, they first are detected automatically by using a fast radial symmetry
transform and a marker-controlled watershed algorithm [1]. Since our generated
hematoxylin masks slightly differ from what were used in [1], the obtained NMI
scores in our benchmark are not exactly the same as [1]. However, the results are
in agreement with [1]. For evaluation of the eosin analysis, several regions are
manually annotated for 25 images. The evaluation results of different methods
for assessing hematoxylin and eosin regions are shown in Table 1. The results
clearly indicate that our proposed method results in the lowest variation in color
after normalization of the images and it outperforms competing state-of-the-art
methods. Figure 3 illustrates an example of the template image, a source image
and the outcomes of color normalization by the different methods.

Fig. 3. Performance of different stain color-normalization methods on an H&E image.
(a) template image (b) original images, (c) Macenko et al.[6], (d) Vahadane et al.[7],
(e) Reinhard et al.[5], (f) Bejnordi et al.[1], (g) Khan et al. [4], (h) DCGMM.
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4 Conclusions

We have introduced a framework for modeling and normalizing the colors in
H&E histopathological images. Our model jointly optimizes the parameters of
a CNN and the parameters of multivariate GMM in an end-to-end learning
framework. By minimizing the negative log-likelihood loss function, the CNN
learns how to cluster the image structures for optimally fitting the GMM on the
data. Our proposal takes only one assumption on the number of clusters that
is evidently chosen to three (K = 3) for H&E images. It does not need manual
tuning of parameters and thresholds which makes it applicable to a wide range
of histopathological images collected from different organs. Since our method
processes and fits the GMM conditioned on the tissue classes, in comparison
with previous methods, it is more robust in presence of strong stain variations.
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