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Abstract. Multiple instance (MI) learning with a convolutional neu-
ral network enables end-to-end training in the presence of weak image-
level labels. We propose a new method for aggregating predictions from
smaller regions of the image into an image-level classification by using
the quantile function. The quantile function provides a more complete
description of the heterogeneity within each image, improving image-level
classification. We also adapt image augmentation to the MI framework
by randomly selecting cropped regions on which to apply MI aggrega-
tion during each epoch of training. This provides a mechanism to study
the importance of MI learning. We validate our method on five different
classification tasks for breast tumor histology and provide a visualiza-
tion method for interpreting local image classifications that could lead
to future insights into tumor heterogeneity.

1 Introduction

Deep learning has become the standard solution for classification when a large
set of images with detailed annotations is available for training. When the anno-
tations are weaker, such as with large, heterogeneous images, we turn to multiple
instance (MI) learning. The image (called a bag) is broken into smaller regions
(called instances). We are given a label for each bag, but the instance labels are
unknown. Some form of pooling aggregates instances into a bag-level classifi-
cation. By integrating MI learning into a convolutional neural network (CNN),
we can learn an instance classifier and aggregate the predictions so the entire
system is trained end-to-end [5,7,12].
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We propose a more general approach for aggregating instance predictions
that looks at the full distribution by pooling with the quantile function (QF)
and learning how much heterogeneity to expect for each class. As data aug-
mentation is especially critical in training large CNNs, we also created an aug-
mentation technique for training MI methods with a CNN (Fig. 1). Through MI
augmentation, we study the importance of the MI formulation during training.

Fig. 1. In MI learning, each bag contains one or more instances. Labels are given for
the bag, but not the instances. MI augmentation is a technique to provide additional
training samples by randomly selecting a cropped image region and the instances within
it. When the bag label is applied to a small number of instances, it is weak because
this small region may not be representative of the bag class. Applying the bag label
to larger cropped regions provides a stronger label, while still providing benefit from
image augmentation. Training with the whole image maximizes the opportunity for MI
learning, but restricts the benefits of image augmentation. At test time, the whole image
is processed and the predictions from all instances are aggregated into a bag prediction.

Using MI learning to make class predictions over smaller regions of the image
provides insight into how different parts of the image contribute to the classifica-
tion. Visualizing the instance predictions provides a method of interpretability
that we demonstrate on a data set of breast tumor tissue microarray (TMA)
images stained with hematoxylin and eosin (H&E) by predicting grade, recep-
tor status, and subtype. Some of these tasks are not previously known to be
achievable from H&E alone. Our quantitative results conclude that the MI com-
ponent is critical to successful classification, demonstrating the importance of
accounting for heterogeneity. This method could provide future insights into
tumor heterogeneity and its connection with cancer progression [3,9].

Contributions. (1) A more general MI aggregation method that uses the
quantile function for pooling and learns how to aggregate instance predictions.
(2) An MI augmentation technique for training MI methods. (3) Exploration
of single instance and MI learning on a continuous spectrum, demonstrating
the importance of MI learning on heterogeneous images. (4) Evaluation on a
large data set of 1713 patient samples (5970 images), showing significant gains
in classifying breast cancer TMAs. (5) A method for visualizing the predictions
of each instance, providing interpretability to the method.
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2 Background

Aggregating Instance Predictions. A permutation invariant pooling of
instances is needed to accommodate images of different sizes, whereas a fully
connected neural network cannot. Existing pooling approaches are very aggres-
sive; they compute a single number rather than looking at the distribution of
instance predictions. Most MI applications use the maximum, which works well
for problems such as cancer diagnosis where, if there is a small amount of tumor,
the sample is labeled as cancerous [6,16]. A smooth approximation, such as the
generalized mean or noisy-OR, provide better convergence in a CNN [5,7,12].
For other tasks, a majority vote, median, or mean is more appropriate. We
include more of the distribution by pooling with the QF and learning a mapping
to the bag class prediction, improving the classification accuracy. Our proposed
method of quantile aggregation learns how to predict the bag class from instance
predictions and so could provide a solution when the most suitable aggregator
is unknown. The QF is a new general type of feature pooling that could provide
an alternative to max pooling in a CNN.

Training MI Methods with a CNN. Image augmentation is commonly
applied in training a CNN by randomly cropping large portions of each image
during each epoch. At test time, the whole image is used. We propose MI aug-
mentation, in which a subset of instances is randomly selected from each bag
during each epoch. Instances are always the same size, but we choose how many
instances to aggregate over. In selecting the number of instances, there are two
extremes: a single instance vs. the whole bag. In the former, the bag label is
assigned to each instance and is often called single instance learning. In the lat-
ter, MI aggregation is incorporated while training the bag classifier as in other
MI methods [1,4]. Comparison studies have found little or no improvement from
these MI methods on some data sets [14,15]. We found MI learning to be very
beneficial and show that it is critical in dealing with heterogeneous data.

3 Multiple Instance Learning with a CNN

We denote a bag by X, its label by Y ε{1, 2, ..., C}, and the instances it contains
by xn for n = 1, ..., N . The instance labels yn are unknown. On a novel sample,
an instance classifier fc

inst predicts the probability of each class c and a function
fc
agg aggregates these instance probabilities into a bag probability:

sn,c = fc
inst(xn) = Pr(yn = c|xn) Sc = fc

agg(s1,1, ..., sN,C) = Pr(Y = c|X).

MI learning can be implemented with many different types of classifiers [1,6,14].
When implemented as a CNN, a fully convolutional network (FCN) forms the
instance classifier finst, followed by a global MI layer for instance aggregation
fagg. The FCN consists of convolutional and pooling layers that downsize the
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representation, followed by a softmax operation to predict the probability for
each class. For an input image of size w×w×3, the FCN output is wd ×wd ×C.
An instance is defined as the receptive field from the original image used in
creating a point in this wd × wd grid; the instances are overlapping. The MI
aggregation layer takes the instance probabilities and the foreground mask for
the input image (downscaled to wd × wd), thereby aggregating over only the
foreground instances. Figure 2 provides an overview.

Fig. 2. During training, a cropped region of a given size is randomly selected. An
FCN is applied to predict the class, producing a grid of instance predictions. The
instance predictions are aggregated over the foreground of the image (as indicated by
the foreground mask) using quantile aggregation to predict the class of the cropped
image region. With a cross entropy loss applied, backpropagation then learns the FCN
and aggregation function weights. At test time, the whole image is used.

4 Multiple Instance Aggregation

Instance predictions can be used to form a bag prediction in different ways.
The bag prediction function should be invariant to the number and spatial
arrangement of instances, so some pooling of predictions is needed. Mean aggre-
gation is well suited for global pooling as it is permutation invariant and can
incorporate a foreground mask for the input image. Denoting the mask as M
and its value for each instance as mnε{0, 1}, the mean aggregation function is

Sc = fc
mean agg(s1,1, ..., sN,C) =

∑N
n=1 mnsn,c∑N

n=1 mn
.

Mean pooling incorporates predictions from all instances, but a lot of infor-
mation is lost in compressing to a single number. A histogram is a more complete
description of the probability distribution, but is dependent upon a suitable bin
width. Alternatively, the QF (inverse cumulative distribution) represents the
boundary points between fractions of the population, providing a better dis-
cretization [2]. We propose quantile aggregation to provide a more complete
description of the instance predictions in a bag. If the instance predictions for
class c are represented by Sc = {s1,c, ..., sN,c}, then the q-th Q-quantile is the
value z such that Pr(Sc ≤ z) = (q−0.5)/Q. To pool with the QF, we first sort Sc

and exclude instances not in the foreground, leaving the set S̃c = {s̃1,c, ..., s̃Ñ,c}.
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The sorted values in S̃c are used to extract the QF vector for each class c as
zc = [z1,c, ..., zQ,c] where zq,c = s̃�Ñ(q−0.5)/Q)�,c. The QF vectors for all classes
are concatenated as Z = [z1, ..., zC ]. We then use a softmax function operating
on Z to predict the bag class. The QF from all classes is used in order to learn
the interaction of different subtypes in a bag. Backpropagtion through the QF
operates in a similar manner to max pooling by passing the gradient back to the
instance that achieved each quantile.

5 Training with Multiple Instance Augmentation

Image augmentation by random cropping is an important technique for creating
extra training samples that helps to reduce over-fitting. We propose an augmen-
tation strategy for MI methods to increase the number of training samples by
randomly selecting a different subset of instances for each epoch. We randomly
crop the image to select the set of instances, such that each crop contains at
least 75% foreground according to the foreground mask. It is important to note
that the image is never resized and the instance size remains constant. For each
crop size chosen, the FCN is applied to the cropped image at full resolution. MI
augmentation is a strategy used during training. As the MI aggregation layer is
invariant to input size, the entire image and all its instances are always used at
test time.

6 Experiments

Data Set. Our data set consists of 1713 patient samples from the Carolina
Breast Cancer Study, Phase 3 [13]. There are typically four 1.0 mm cores per
patient in the TMA, with a total of 5970 cores. Each core is selected from the
H&E-stained whole slide by a pathologist such that it contains a substantial
amount of tumor tissue. Each image has a diameter of around 2400 pixels and a
maximum of 3500 pixels. One sample core is shown in Fig. 2. We use a random
subset of half the patients for training and the other half for testing. Classifica-
tion accuracy is measured for five different tasks, some of them multi-class: (1)
histologic subtype (ductal or lobular), (2) estrogen receptor (ER) status (pos-
itive or negative), (3) grade (1, 2, or 3), (4) risk of recurrence score (ROR)
(low, intermediate, or high), (5) genetic subtype (basal, luminal A, luminal B,
HER2, or normal-like). Ground truth for histologic subtype and grade are from
a pathologist looking at the original whole slide. ER status is determined from
immunohistochemistry, genetic subtype from the PAM50 array [11], and ROR
from the ROR-PT score-based method [11].

Implementation Details. The TMA images are intensity normalized to stan-
dardize the appearance across slides [10]. The hematoxylin, eosin, and residual
channels are extracted from the normalization process and used as the three-
channel input for the rest of our algorithm. A binary mask distinguishing tissue
from background is also provided as input.
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We use the pre-trained CNN AlexNet [8] and fine-tune with the MI architec-
ture shown in Fig. 2. All five tasks are equally weighted in a multi-task CNN as
shared features help to reduce over-fitting. For each patient, ground truth labels
are available for most tasks. The cross entropy loss is adjusted to ignore patients
missing a label for a particular task.

In addition to MI augmentation, we randomly mirror and rotate each train-
ing image. To accommodate the larger cropped image sizes in GPU memory, we
reduce the batch size. A typical image with tissue of diameter 2400 pixels pro-
duces a 68 × 68 grid of instances. After applying the foreground mask, there are
roughly 3600 instances. Q = 15 quantiles are used in all experiments. There are
typically four core images per patient; we assign the patient label to each during
training and, at test time, take the mean prediction across the images. Fur-
ther MI learning could be done to address the multiple core images per patient,
however our current focus is only on MI learning within each image.

MI Augmentation and the Importance of MI Learning. We study the
effect of MI learning on large images by selecting the cropped image size for
training. The smallest possible size is 227 × 227 (the input size for AlexNet),
consisting of a single instance. When the bag label is applied to each instance
during training, this is called single instance learning. Alternatively, a larger
cropped region of size w ×w can be selected; we test multiples of 500 up to 3500
and use mean aggregation in this experiment. By assigning the bag label to this
larger cropped region during training and keeping the instance size constant, we
perform MI learning. Multiple random crops are obtained from each training
image such that roughly the same number of pixels is sampled for each crop size
(i.e., the whole image for the largest crop size of 3500, 35002

w2 random crops for a
training crop of size w). For the largest crop size, the whole image is used without
MI augmentation. Random mirroring and rotations are used for augmentation
at all crop sizes. At test time, the whole image is always used, with the bag
prediction formed by aggregating across all instances.

Fig. 3. Classification accuracy using mean
aggregation as the number of instances
(cropped image size) used for training is
increased, while keeping instance size con-
stant.

Figure 3 shows that larger crop
sizes for training significantly increases
classification accuracy (p < 10−3

with McNemar’s test for w = 500
vs. w = 1500 on all tasks). The ben-
efits level off for larger crops. As
GPU memory requirements increase
for larger crop sizes, selecting an
intermediate crop size provides most
of the benefits of MI augmentation.

Although it should not be surpris-
ing that a larger crop size at train-
ing works better, the magnitude of
improvement is very significant. If
the images were homogeneous (at the scale of a single instance, w = 227), then
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applying the bag label to each instance should produce a classification accuracy
similar to when MI aggregation over the whole image is used during training.
This is clearly not the case in Fig. 3. For example, ER status increases from
68.6% to 85.6% when applying MI learning over the whole image. This demon-
strates the importance of MI learning and the effect of heterogeneity. Our data
set consists of cores selected from a whole slide by a pathologist. MI learning
may be even more crucial when classifying larger and more heterogeneous images
like whole slides.

Table 1. Average classification accuracy for differ-
ent types of MI aggregation. The standard error is in
brackets.
Task Max Mean Quantile

Histologic subtype .898 (.004) .931 (.004) .952 (.003)

ER .683 (.006) .833 (.008) .841 (.006)

Grade .408 (.019) .680 (.003) .676 (.006)

ROR .542 (.010) .595 (.003) .582 (.008)

Genetic subtype .321 (.032) .548 (.006) .544 (.003)

MI Aggregation. We com-
pared aggregation methods
by training our model on
a crop size w = 2000 and
taking the average classifica-
tion accuracy over four runs.
Table 1 shows that mean
and quantile aggregation
both significantly outper-
form max (p < 10−8 with
McNemar’s test). While quan-
tile aggregation performance is similar to mean for some tasks, a significant
increase in performance (93.1% to 95.2%) is observed for predicting the his-
tologic subtype of ductal vs. lobular (p < 10−10 with McNemar’s test). This
improvement is due to quantile aggregation predicting the bag class from a more
complete view of the instance predictions using QF pooling, thereby capturing
the heterogeneity.

Heterogeneity. By computing the class predictions for each instance, we get
an idea of each region’s contribution to the classification. Figure 4 provides a
visualization for a sample image where the instance predictions are colored for
each class. The w = 2000 crop size was used for this example. With the same
computation performed over the whole test set, we calculated the proportion of
instances predicted to belong to each class. Figure 5 plots the results for grade
1 vs. 3 and genetic subtype basal vs. luminal A. Heterogeneity is expected for
grade, as the three tumor grades are not discrete, but a continuous spectrum
from low to high. On the other hand, the level of heterogeneity to expect for
genetic subtype is unknown because no studies have yet assessed genetic subtype
from multiple samples within the same tumor. The graph shows a continuous
spectrum from basal to luminal A. The luminal B, HER2, and normal samples
lie mostly on the luminal A side, but with some mixing into the basal side.
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Fig. 4. Visualization of instance predictions for a sample with ground truth labels of
ductal, ER positive, grade 1, low ROR, and luminal A.

Fig. 5. Predicted heterogeneity for grade 1 vs. 3 and genetic subtype basal vs luminal
A. The predicted proportion for each class is calculated as the proportion of instances
in the sample predicted to be from each class. Test samples for all classes are plotted.

7 Discussion

We have shown that MI learning while training a CNN is critical in achieving
high classification accuracy on large, heterogeneous images. Even with a small
number of labeled samples, our model was successful in fine-tuning the AlexNet
CNN because of the large size of the images providing plenty of opportunity
for MI augmentation. The impact of MI learning indicates that accommodating
image heterogeneity is essential. While aggregating instance predictions with
the mean is sufficient for some tasks, quantile aggregation produces a signifi-
cant improvement for others. Instance-level predictions will enable future work
studying tumor heterogeneity, perhaps leading to biological insights of tumor
progression.
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