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Abstract. The morphological clues of various cancer cells are essen-
tial for pathologists to determine the stages of cancers. In order to
obtain the quantitative morphological information, we present an end-to-
end network for panoptic segmentation of pathology images. Recently,
many methods have been proposed, focusing on the semantic-level or
instance-level cell segmentation. Unlike existing cell segmentation meth-
ods, the proposed network unifies detecting, localizing objects and assign-
ing pixel-level class information to regions with large overlaps such as
the background. This unifier is obtained by optimizing the novel seman-
tic loss, the bounding box loss of Region Proposal Network (RPN), the
classifier loss of RPN, the background-foreground classifier loss of seg-
mentation Head instead of class-specific loss, the bounding box loss of
proposed cell object, and the mask loss of cell object. The results demon-
strate that the proposed method not only outperforms state-of-the-art
approaches to the 2017 MICCAI Digital Pathology Challenge dataset,
but also proposes an effective and end-to-end solution for the panoptic
segmentation challenge.

1 Introduction

Cancer diagnosis by pathologists mainly relies on the visual inspection of tissue
sample images captured by microscopy. The morphological features of cells such
as the shape and nuclei size are significant to the diagnosis of the cancer stages
(benign and malignant). It is impractical and labour-intensive for pathologists
to produce manual morphological annotations for the whole slide image.

The general semantic scene understanding can be categorized into semantic
segmentation, object detection, instance segmentation, and panoptic segmenta-
tion, as shown in Fig. 1. The instance segmentation assigns pixel-level segmenta-
tion masks to each individual object. The semantic segmentation obtains pixel-
level whole image classification without differentiating different objects belong
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Fig. 1. An example of illustrating the difference between semantic segmentation,
instance segmentation and panoptic segmentation.

to the same class, but panoptic segmentation produces its semantic label (class)
and its instance id. Recently in general computer vision, semantic segmentation
has drawn a lot of attention, and many methods [1,10,16] based on convolutional
neural network architectures are proposed. A U-shaped neural network [12] fur-
ther includes more feature channels in the upsampling layer, which is proven to
generate reasonable segmentation from limited training data such as neuronal
structure segmentation of electron microscopy images. LinkNet [1] accelerates
the processing time and reduces the network parameters by utilizing addition
of feature channels instead of concatenation. Besides semantic segmentation,
breakthroughs of object detection and instance segmentation happen due to the
region proposal strategy by Faster R-CNN [11] and mask head segmentation by
Mask R-CNN [5,6]. The recently introduced panoptic segmentation [9] defines
its meaning by unifying semantic segmentation and instance segmentation.

In addition to recent developments of semantic scene understanding in gen-
eral computer vision, there have been attempts [2,13–15] particularly targeting
cell segmentation. The major difference between bio-medical related segmenta-
tion and general computer vision is the limited training data due to the difficulty
of manual labelling requiring the prior knowledge of the specialists. Some pro-
posed to use unannoted images with adversarial network [15] and others attempt
to include contour-aware loss [2] and suggestive annotation [13] to solve these bio-
medical segmentation problems. Cell segmentation requires a unique id for each
cell so only semantic segmentation is not enough to produce individual object
segmentation masks. Although instance segmentation can produce unique ids
for each cell object, it only relies on image features of intracellular materials.
Moreover, the panoptic segmentation not only produces instance cell masks but
also fully utilizes the potential information relation between intercellular and
intracellular materials.

Inspired by the related work mentioned above, we propose an end-to-end
panoptic segmentation method, named Cell R-CNN, to perform morphological
analysis of pathology images. Our contribution is three-fold. First, we propose
a unified solution of combining semantic segmentation and instance segmenta-
tion by introducing the novel semantic segmentation branch. Second, the pro-
posed branch is capable of detecting regions having large overlaps with objects.
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Third, we propose to use upsampling layers to replace deconvolution layers in
GCN [10] to reduce the required parameters. Evaluated on the 2017 MICCAI
Digital Pathology Challenge dataset, results indicate that the proposed Cell
R-CNN outperforms state-of-the-art methods in terms of segmentation metrics
including F1-score, Dice, and Hausdorff distance.

2 Methods

The main idea of the proposed framework is to unify semantic segmentation and
instance segmentation. The convolutional features like ResNet [4] are used by
the RPN [11] in object detection to reduce the computation time of the proposal.
Similarly, some recent advances in semantic segmentation also demonstrate that
the accuracy of semantic segmentation is improved by applying ResNet as its
encoder. Is that possible to share these convolutional features between semantic
segmentation and instance segmentation? In this paper, we simply and intu-
itively choose the global convolutional network (GCN) [10] as our base of seman-
tic segmentation branch. The proposed Cell R-CNN firstly generates the con-
volutional features using the backbone ResNet, which are shared by the novel
and intuitive semantic segmentation branch and feature map branch. This shar-
ing operation improves the potential feature representation ability of backbone
network (ResNet). The outputs of feature map branch are then fed into RPN
to generate proposals. The region-of-interest proposals are the inputs of the
instance segmentation branches [5]. Finally, the multi-task losses are optimized
together to obtain the panoptic segmentation result.

Fig. 2. The network architecture of semantic segmentation branch and feature map
branch. C, BR, UP, GCB and RES X represent convolutional layer, boundary refine
block, upsampling layer, global convolution block and specific ResNet layer respectively.

2.1 Semantic Segmentation Branch and Feature Map Branch

The overview of the semantic segmentation branch and the feature map branch
is shown in Fig. 2. The semantic segmentation branch generates segmentation
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by assigning pixel-level object class information and the feature map branch
prepares the features shared by RPN and instance branches (Sect. 2.2). GCN is
chosen for the semantic segmentation branch because it is highly efficient and
has global receptive field. ResNet101 is used as the backbone of GCN. The GCB
employs convolutional kernels with the size 1 × k + k × 1 and k × 1 + 1 × k
to ensure that there is enough valid receptive field. Instead of directly using
the convolutional kernels with k× k, the GCB is designed to greatly reduce the
required training parameters for the network. BR consists of a conv+relu+conv
block and a residual design: x = F (x) + x. BR aims to replace non-trainable
conditional random field or other post-processing techniques. In simple words,
everything is learnable. Besides the semantic segmentation branch, the features
generated by ResNet are also shared by the feature map branch. This design
not only maximizes the potential feature representation ability of ResNet but
also greatly reduces the required parameters. The feature map branch targets
at sharing features (P2, P3, P4, P5, P6) between RPN and the Instance Branch
(Sect. 2.2). The first and second the convolutional kernel sizes of feature map
branch after ResNet X are 1 × 1 and 3 × 3, respectively.

2.2 Region Proposal Network and Instance Branch

The inputs of RPN are the feature maps (P2, P3, P4, P5, P6) and its out-
puts are bounding box proposals with a score showing the possibility of being
an object. The anchors (rectangular bounding boxes) are initially generated
by sliding window strategy. At each sampling point, anchors with different
ratios and sizes are generated. Each anchor is assigned a score and box delta
(t∗x, t

∗
y, log(w/wa), log(h/ha)) by the RPN shown in Fig. 3. The bounding box

regression [3] is defined with the following equations:

tx = (x− xa)/wa, ty = (y − ya)/ha, tw = log(w/wa), th = log(h/ha

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha, t∗w = log(w∗/wa), t∗h = log(h∗/ha)
(1)

where x, y, w and h represent the coordinates of the center sampling points, the
width and height of the predicted bounding box (ROIs). Similarly, xa, ya, wa

and ha denote corresponding variables of the anchor box. The other variables
are for the ground truth. The outputs of RPN are further refined by the pro-
posal layer. The proposal layer sorts anchors by scores decreasingly. The box
delta refinement is then applied and non-max suppression removes candidates of
refined bounding boxes with strong overlaps with each other. For optimization
of boxes and scores loss, only the positive anchors contribute to the loss calcula-
tion. In order to successfully train RPN, the ratio of positive anchors to negative
anchors is maintained within a certain range. The kernel sizes of first and last
RPN convolution layers are 3 × 3 and 1 × 1, respectively.

The instance branches consist of instance location and discriminator branch
and instance mask branch. The instance location and discriminator branch fur-
ther refine bounding box location and evaluate the possibility of each object cat-
egory (foreground or background), which is a two-stage detector. The instance
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Fig. 3. Region proposal network and instance branch. ROIS, PYRAMID ROI, and
DECONV indicate regions of interest, pyramid ROI aligning layer and deconvolutional
layer, respectively.

branches use refined ROIs generated by the proposal layer as part of its input,
and the other inputs are the feature maps (P2, P3, P4, P5). The pyramid ROI
aligning layer selects the corresponding level of feature map based on the size
of ROI. Here, instead of class specific loss, we use foreground-background loss.
This particular design attempts to segment cells from different classes using the
same network inspired by the segment everything work [6]. The instance mask
branch is to generate an instance object segmentation when an ROI is given. For
kernel sizes of convolutional layer for instance mask branch, all of them are 3×3
except the last convolutional layer is 3 × 3. The kernel size of deconvolutional
layer is 2 × 2 with stride 2. For the computation of instance loss, the ground
truth of object mask is resized into 28 × 28. This design is to preserve the spa-
tial relation information. Due to pixel-to-pixel correspondence of pyramid ROI
aligning layer, the prediction result of instance mask branch can be accurate.

The final loss is defined with the following equation:

Ltotal = Lsemantic + Lscore + Lboxes(RPN)
+ L(fg−bg) + Lboxes(Instance) + Linstance

(2)

where Ltotal, Lsemantic, Lscore, Lboxes(RPN), L(fg−bg), Lboxes(Instance), and
Linstance represent the total loss of Cell R-CNN, semantic segmentation loss,
classifier loss of RPN, bounding box regression loss of RPN, foreground-
background loss of instance branch, bounding box regression loss of instance
branch, and mask segmentation loss of each object respectively as shown in
Figs. 2 and 3; Lsemantic and Linstance are categorical cross-entropy loss and
binary cross-entropy loss respectively; Lboxes(RPN) and Lboxes(Instance) are
the smoothed L1 regression losses, L1(t− t∗). Lscore and L(fg−bg) are simple log
losses between different classes.
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3 Experiment

Experimental evaluation was performed on the 2017 MICCAI Digital Pathology
Challenge dataset. The dataset is composed of 32 training images and 32 testing
images. Both the training and testing images were sampled from the whole slide
image of patients with glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSCC), lower grade glioma (LGG) tumors or non small cell
lung cancer (NSCLC). The number of each category is 8 in both the training
and testing datasets. The image size is either 500 × 500 or 600 × 600.

Fig. 4. An example of semantic segmentation branch result.

The data augmentation technique was applied to both the proposed method
and comparison methods. The proposed method is implemented using keras and
tensorflow. The convolutional kernel size for GCN block of semantic segmen-
tation branch is constant as 5. The upsampling size along x, y dimension of
semantic segmentation branch is 2. Since the maximum number of cells is less
than 100, the number of training regions of interest is set to 400 to increase
potential candidates. The pixel-size of the anchors are {8, 16, 32, 64, 128}. The
stride of the anchors is 2. The optimizer is stochastic gradient descent (SGD)
whose initial learning rate, momentum and weight decay are 2e−3, 0.9 and 1e−4,
respectively. The non-maximum suppression threshold is set to 0.3 to ensure the
successful detection of boundary-touching cells. The minimum detection confi-
dence is set to 0.5.

An example of semantic branch result is shown in Fig. 4. The semantic branch
is able to learn the region with large overlaps with other objects. In this particu-
lar example, the non-cell background region overlaps with individual cell objects
but successfully distinguished by the semantic segmentation branch. One chal-
lenging condition is that only limited training data was provided while various
cancer categories lead to different imaging conditions shown in Fig. 5. Overall,
the proposed method is capable of producing accurate and reliable panoptic
segmentation of different cancer images. According to the segmentation results,
there are still incomplete cell segmentation of prediction result such as top left
of prediction result on NSCLC image in Fig. 5. For quantitative evaluation, F1
score, object-level Dice, and Hausdorff distance are computed. The detailed def-
initions of F1 score, object-level Dice, and Hausdorff distance are referred to [2].
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Fig. 5. Panoptic-level cell segmentation results of various cancer categories (from top
to bottom): testing image, prediction, ground truth.

Table 1. The quantitative cell segmentation results.

Network F1-score Dice Hausdorff

UNet [12] 0.4059 ± 0.2311 0.4942 ± 0.1872 54.1130 ± 73.4936

Pix2Pix [7] 0.6208 ± 0.1126 0.6351 ± 0.0706 19.1441 ± 6.0933

LinkNet [1] 0.4117 ± 0.1852 0.5611 ± 0.0899 19.7294 ± 9.0798

FnsNet [8] 0.7413 ± 0.0668 0.6165 ± 0.0839 25.9102 ± 9.5834

Ours w/o Semantic branch 0.8004 ± 0.0722 0.7070 ± 0.0598 12.6723 ± 3.4591

Ours 0.8216 ± 0.0625 0.7088 ± 0.0564 11.3141 ± 2.6917

It can be seen from Table 1 that the proposed method ranked first in terms of
F1-score with 0.8216, Dice with 0.7088, and minimum Hausdorff distance with
11.3141. Based on the average and standard deviation of the evaluation metrics,
the proposed framework is most robust and stable among all compared methods.

4 Conclusions

In this paper, we propose a novel and end-end Cell R-CNN framework to gen-
erate panoptic segmentation. The proposed method unifies individual semantic
and instance segmentation tasks with a novel semantic segmentation branch.
The semantic segmentation branch is capable of learning features from regions
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with large overlaps with other objects. Evaluated on the 2017 MICCAI Digi-
tal Pathology Challenge dataset, the proposed method outperforms compared
methods in terms of F1 score, cell-object Dice, and Hausdorff distance.

References

1. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for effi-
cient semantic segmentation. arXiv preprint arXiv:1707.03718 (2017)

2. Chen, H., Qi, X., Yu, L., Heng, P.: DCAN: deep contour-aware networks for accu-
rate gland segmentation. In: CVPR, pp. 2487–2496 (2016)

3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016)

5. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV, pp. 2980–2988
(2017)

6. Hu, R., Dollár, P., He, K., Darrell, T., Girshick, R.: Learning to segment every
thing. In: CVPR (2018)

7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: CVPR, pp. 5967–5976 (2017)

8. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

9. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation.
arXiv preprint arXiv:1801.00868 (2018)

10. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve seman-
tic segmentation by global convolutional network. In: CVPR, pp. 1743–1751 (2017)

11. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detec-
tion with region proposal networks. In: NIPS, pp. 91–99 (2015)

12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

13. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep
active learning framework for biomedical image segmentation. In: Descoteaux, M.,
Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI
2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66179-7 46

14. Zhang, D., Song, Y., Liu, S., Feng, D., Wang, Y., Cai, W.: Nuclei instance seg-
mentation with dual contour-enhanced adversarial network. In: ISBI (2018)

15. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep
adversarial networks for biomedical image segmentation utilizing unannotated
images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L.,
Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66179-7 47

16. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
CVPR, pp. 6230–6239 (2017)

http://arxiv.org/abs/1707.03718
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
http://arxiv.org/abs/1801.00868
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-66179-7_46
https://doi.org/10.1007/978-3-319-66179-7_46
https://doi.org/10.1007/978-3-319-66179-7_47

	Panoptic Segmentation with an End-to-End Cell R-CNN for Pathology Image Analysis
	1 Introduction
	2 Methods
	2.1 Semantic Segmentation Branch and Feature Map Branch
	2.2 Region Proposal Network and Instance Branch

	3 Experiment
	4 Conclusions
	References




