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Abstract. We propose a novel deep learning method called Boundary-
Enhanced Segmentation Network (BESNet) for the detection and seman-
tic segmentation of cells on histopathological images. The semantic seg-
mentation of small regions using fully convolutional networks typically
suffers from inaccuracies around the boundaries of small structures, like
cells, because the probabilities often become blurred. In this work, we
propose a new network structure that encodes input images to feature
maps similar to U-net but utilizes two decoding paths that restore the
original image resolution. One decoding path enhances the boundaries of
cells, which can be used to improve the quality of the entire cell segmen-
tation achieved in the other decoding path. We explore two strategies for
enhancing the boundaries of cells: (1) skip connections of feature maps,
and (2) adaptive weighting of loss functions. In (1), the feature maps
from the boundary decoding path are concatenated with the decoding
path for entire cell segmentation. In (2), an adaptive weighting of the
loss for entire cell segmentation is performed when boundaries are not
enhanced strongly, because detecting such parts is difficult. The detection
rate of ganglion cells was 80.0% with 1.0 false positives per histopathol-
ogy slice. The mean Dice index representing segmentation accuracy was
74.0%. BESNet produced a similar detection performance and higher
segmentation accuracy than comparable U-net architectures without our
modifications.
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1 Introduction

The detection or the semantic segmentation of cells in histopathological images
using fully convolutional networks has been explored [1,2] for many diagnostic or
medical research purposes. Our focus in this work is the ganglion cell detection
of the HE-stained images of pediatric intestine specimens of Hirschsprung’s dis-
ease [3]. To quicken and increase the accuracy of its pathologic diagnosis during
surgery, an automatic segmentation method of ganglion cells is required. There
may be several ganglion cells on HE-stained images, which have variations of
color, size, shape, and contrast. Many cells or tissues also resemble ganglion
cells on HE-stained images.

Fig. 1. Ganglion cells on HE-stained images: Green circles or black arrows represent
ganglion cells, which have variations of color, shape, and contrast. Cells or tissues also
exist that resemble ganglion cells.

U-net [1] is one of the most popular and widely used fully convolutional archi-
tectures, which segment biomedical images well. However, for small objects in
large images, blurring of the probability response maps occurs around the bound-
aries of these small objects. This problem is caused by lack of consideration of
difficulties around the target object borders. Hand-crafted weighting schemes
of the loss for outside objects have been introduced for improving the predic-
tion in these regions [1,2]. However, adaptive weighting schemes for improving
the responses around the border based on the difficulty of training have not yet
been considered. We tackle these problems by proposing a (1) new network archi-
tecture called Boundary-Enhanced Segmentation Network (BESNet) and a (2)
Boundary-Enhanced Cross Entropy (BECE) loss. BESNet consists of a network
with two decoding paths. One is trained for boundary prediction but suffers
from inaccuracies because detecting the boundaries is difficult. This informa-
tion on the degree of difficulty of detecting a network’s boundaries can be fused
with the decoder path for entire cell segmentation by skip connections and (2)
Boundary-Enhanced Cross Entropy loss. Accessing and modifying feature maps
in the layers that haven’t been decoded yet is inspired by deep supervision,
which is especially useful for edge enhancement [4]. In this work, we enhance the
segmentation of the entire cell by utilizing the feature maps of boundaries.

The BESNet performance is shown by the detection and the segmentation
of ganglion cells from the HE-stained images of the histopathological samples of
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pediatric intestine. As shown in Fig. 1, ganglion cells are scattered on HE-stained
images, and many similar regions surround them. A computer-aided diagnosis
system that detects and measures the size of the ganglion cells is required for
assisting the rapid pathologic diagnosis during surgery, which finds ganglion
cells from HE-stained images. To the best of our knowledge, no other work
has addressed the detection or segmentation of ganglion cells apart from our
preliminary work [5].

Fig. 2. Network structure of BESNet: While encoding part resembles standard U-net,
BESNet has two decoding parts, Boundary Decoding Path (BDP) and Main Decoding
Path (MDP). Feature maps in BDP are concatenated with MDP. Loss function for
MDP is weighted by BDP output.

2 Method

2.1 Boundary-Enhanced Segmentation Network (BESNet)

BESNet is a novel, fully convolutional network for semantic segmentation. Its
concept is to train the boundaries of the targeted cells and use their responses
to adaptively weight the training loss for entire cell segmentation. This allows us
to apply a stronger weight in the more difficult part of the targeted cell during
training. Our proposed network structure is shown in Fig. 2. Any input patch is
encoded into feature maps in a similar way to U-net [1] on the ENcoding Path
(ENP). Unlike U-net, BESNet has two decoding paths. A Boundary Decoding
Path (BDP) is trained using the boundary labels of the annotated cells. Feature
maps in this path are concatenated with Main Decoding Path (MDP), which is
trained on all of the cell labels. After two layers of 3× 3 convolution (CV), batch
normalization (BN), and ReLU activation functions (RA), 2× 2 max pooling
(MP) decreases the resolution at each level of the ENP. After repeating these
layers (CV, BN, RA, CV, BN, RA, and MP) three times and this sequence
twice (CV, BN, RA), we obtain feature maps whose resolution is the lowest but
has the highest level of abstraction for effective semantic segmentation. Here,
the network is branched into BDP and MDP. The resolution is restored by 2× 2
transposed convolutions (TC) at each resolution level. Both BDP and MDP have
three times of the sequence (RA, TC, CV, BN) with a final CV layer with 1 × 1
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convolution kernels and sigmoid activations. For each TC on BDP and MDP,
feature maps after the last RA in the same resolution in ENP are summed by
skip connections. Moreover, for each RA on MDP, feature maps after the last
RA in the same resolution in BDP is concatenated using skip connections.

2.2 Boundary-Enhanced Cross-Entropy (BECE) Loss

The basic idea of cross-entropy, which is one of the most commonly used loss
functions, is to penalize the loss more when the network’s output is more different
than the ground-truth. We utilize cross-entropy loss LC for BDP. Since this is
a binary problem but we are only interested in how difficult it is to learn the
foreground pixels of the boundary, LC is defined by

LC = −
∑

x∈M

B(x) log
(
pB(x)

)
(1)

where x represents a pixel in mini-batch M , B(x) ∈ {0, 1} represents the bound-
ary label of the ground-truth at x, and pB(x) ∈ {0, · · · , 1}R represents the BDP
output at x.

BDP output pB(x) usually performs well at the boundaries, but it may
become low at the boundary parts that are less clear or have rare types of
appearances. This means that the features of the boundaries with low output
of BDP probability are difficult to train by the network. Therefore, these parts
should be trained more strongly by MDP by adaptively weighting the loss func-
tion for the MDP branch. For MDP, we newly define a Boundary-Enhanced
Cross-Entropy (BECE) loss:

LD = −
∑

x∈M

{[
1 + b(x)

]
G(x) log

(
pM(x)

)
+ w

[
1 − G(x)

]
log

(
1 − pM(x)

)}
(2)

b(x) = α max
(
β − pG(x), 0

)
(3)

where G(x) ∈ {0, 1} and pM(x) ∈ {0, · · · , 1}R represent the ground-truth label
and the MDP output at x, respectively. b(x) is a function that represents the
training difficulty of the boundary at x. α ∈ {0, · · · , 1}R and β ∈ {0, · · · , 1}R
are coefficients for the strength of boundary-enhanced weighting and minimum
value of pB that are enhanced well, respectively. w is weight for background
pixels, which is the ratio between numbers of positive and negative pixels. This
loss definition is partly inspired by Focal Loss [6], but it adjusts the weighting
just from the probabilities of the same output of the network.

2.3 Training and Testing

Input and Output: Our method detects and segments cells from histopatho-
logical images. For training, a set of images and their ground-truth labels Gn
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are required. Detection and segmentation of cells are performed on the images
for testing. The output is a set of ganglion cell regions.

Training: Histopathological images, which are usually scanned in high resolu-
tion, are much bigger (e.g., 1636× 1088 pixels) than what we can fit on GPU
memory as input to BESNet, (see Sect. 2.1 for more details). Hence, we first per-
form d-times downsampling of the images and the ground-truth. Then patches
(sx×sy pixels) are cropped randomly, but at least one positive pixel must exist in
the ground-truth. We employ a data augmentation process during training that
consists of random rotation, translation, and elastic deformations by B-spline
splitting. We collect m images as a mini-batch for training at each iteration.

Testing: BESNet is reshaped so that the input and output sizes cover larger
region srx×sry pixels. The testing image is divided into patches in a grid pattern
with v-voxel overlap to the neighboring patches. The MDP output is computed
for each patch, and the output for every histopathological image is combined
from all the patch predictions. The average responses are computed on the over-
lapping parts of multiple patches to allow smooth transitions of the responses
across patches.

3 Experiments

Overview: To evaluate the segmentation accuracy of our proposed model with-
out decreasing the detection performance of the cells, we conducted detection
and segmentation of the ganglion cells on the HE-stained images of histopatho-
logical samples. The detection performance was evaluated by the detection rate
and the number of false positives (FPs) per image (FPs/image). Segmentation
accuracy was evaluated by Dice index, precision, and recall. Probability thresh-
old t was set to 0.05, 0.10, · · · , 0.95 for FROC evaluation.

Dataset: The HE-stained images of the intestine parts whose peristaltic move-
ment is functioning properly were obtained from 25 patients suffering from
Hirschsprung disease from whom we received ethical approval from Nagoya Uni-
versity Hospital (Japan). They include 741 ganglion cells from 224 images. Each
specimen was imaged with an ECLIPSE Ni-U (Nikon) microscope and scanned
by a DS-Ri2 (Nikon) camera as RGB-color images consisting of 1636 × 1088 pix-
els. Resolution is 250 × 250 nm2. The ground-truth labels were manually created
by an expert pediatric surgeon.

Condition: Three-fold cross validation was conducted by dividing the patients
into three groups. The network was implemented on Keras with a TensorFlow
backend. The parameters were empirically set to d = 2, sx × sy = 256 × 256,
s′
x × s′

y = 768 × 256, α = 0.5 and β = 0.1. DeepLearningBOX (GDEP Advance)
workstations with GTX 1080 Ti (NVIDIA) GPUs, CUDA 8.0, and cuDNN 6.0
was used for the computation. We fixed the random number of seeds of NumPy
and TensorFlow for reproducibility. Other training conditions were set as follows:
mini-batch size to 8, iterations to 30000, and optimizer to Adam.
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Ablation Studies: For a comparison with the proposed method, we conducted
two ablation studies: “U-net & Cross-entropy” and “U-net & Dice”, using cross-
entropy loss or Dice loss, respectively. As annotated in Fig. 2, removing BDP
from BESNet allows us to get a U-net-like structure. It contains BN layers, and
have four levels of resolution (original one [1] has five).

4 Results and Discussions

Detection: The partial FROC curves of the three methods that were obtained
by changing threshold t are shown in Fig. 3. Table 1 shows the detection perfor-
mance when t is 0.20, 0.50, or 0.80. The proposed method’s performance was
89.5% of the detection rate with 2.5 ± 7.1 FPs/slice with t = 0.50, and an exam-
ple slice of the results is shown in Fig. 4. All three methods produced similar
results. One difference between (c) Dice and the others is the change of the
balance between the detection rate and the FPs/slice.

Fig. 3. Partial FROC curves:
Proposed method, U-net &
Cross-entropy, and U-net &
Dice produced similar detection
performances.

Table 1. Performances of three methods: Par-
tial FROC curves were linearly interpolated and
FPs/slice were estimated at 80.0%, 85.0%, and
90.0% of detection rates. Bold FPs/slice repre-
sent smallest average. FPs/slice of U-net & Dice
at 90.0% of detection rate could not be esti-
mated since no threshold produced detection rate
of 90.0% or above.

Detection rate FPs/slice

Proposed method 80.0% 1.0±1.7

U-net & Cross-entropy 1.1± 2.0

U-net & Dice 1.8± 2.9

Proposed method 85.0% 1.8± 2.6

U-net & Cross-entropy 2.4± 3.5

U-net & Dice 3.3± 4.8

Proposed method 90.0% 4.8±5.4

U-net & Cross-entropy 7.1± 7.6

U-net & Dice N/A

Segmentation: Segmentation accuracies are shown in Table 2 and Figs. 6(a)–
(c). The Dice index, precision, and recall of the proposed method were 71.4±31.9,
81.2 ± 32.9, and 67.2 ± 31.7 (mean ± std. dev.), respectively, when threshold t
was 0.50. The scores of the true positives (TPs) were computed for the highest
regions obtained by the methods, and the scores of all the false negatives are zero.
Our proposed method produced the highest Dice index and precision. Using the
Wilcoxon rank sum test, most results between the proposed method and others
showed significant differences (Table 2).
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Fig. 4. Probabilities and outputs of three methods.

Table 2. Segmentation accuracy of three methods when t is 0.20, 0.50, or 0.80. Mean
± standard deviation of each measure is shown. Bold numbers show best mean of
all scores among three methods with common t. (*) and (**) represent significant
differences between proposed method, which has p < 0.05 and p < 0.01, respectively.

t Method Dice index Precision Recall

0.20 Proposed method 74.0±31.8 81.8±29.9 72.3± 32.8

U-net & Cross-entropy 70.9± 33.6 (**) 75.7± 31.3 (**) 72.6±35.8 (**)

U-net & Dice 69.7± 35.1 (**) 74.1± 34.3 (**) 70.7± 36.8 (**)

0.50 Proposed method 69.1±34.8 79.9±35.2 64.7± 34.1

U-net & Cross-entropy 66.8± 36.7 (*) 75.8± 35.9 (**) 65.1± 37.3 (**)

U-net & Dice 67.5± 36.9 (*) 73.9± 36.2 (**) 67.0±38.0 (**)

0.80 Proposed method 63.5±35.9 77.7±38.9 56.9± 33.8

U-net & Cross-entropy 61.6± 37.9 (**) 74.2± 39.7 (**) 56.8± 36.8 (**)

U-net & Dice 63.3± 38.3 (**) 71.3± 38.9 (**) 61.1±38.8 (**)

Three cells on a slice are magnified in Fig. 5. Cell A had blurred probabilities
around the boundaries from the U-net & Cross-entropy, as shown in dotted cyan
squares. Predicting this part is also difficult by the BDP of our proposed method.
Due to the adaptive weighting of such boundaries during training, a clearer and
more accurate region segmentation was obtained by MDP. Cell B and C also
had weak boundary probabilities from BDP in almost the entire cell. The MDP
of our proposed method accurately produced high probabilities on entire of each
cell regions, and two cells were divided well. U-net & Cross-entropy produced
higher probabilities even gap between two cells, and segmentation results of two
cells were connected. This is why Dice index of Cell B was only 57.4% with U-
net & Cross-entropy. U-net & Dice produced high probabilities only on Cell B,
and Cell C was a false negative. While just dividing two neighboring cells gives
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the same advantage as other works [1] including methods specific to instance
segmentation [2], BESNet also can achieve better segmentation accuracy inside
cells.

Proposed methodBDP MDP U-net & Cross-entropy U-net & DiceInput image

Ground Truth Probability: 0.0 1.0(Dice index) True Posi ve

A

B C

(84.1%) (76.0%) (9.9%)

(85.6%) (47.9%) (75.9%)(88.6%) (68.1%) (92.0%)

Fig. 5. Probabilities on three cells: Yellow numbers show Dice index of segmentation
results where t = 0.50. Green circles show ground-truth. In dotted cyan squares of
each cell, BDP output does not clearly show boundaries. In such regions, our proposed
method produced higher probabilities inside cell and low at ones outside it, compared
to U-net.

Fig. 6. Segmentation accuracy of three methods. Proposed method had higher Dice
index and precision than others.

5 Conclusions

We proposed a novel deep learning method called Boundary-Enhanced Segmen-
tation Network (BESNet) for the detection and semantic segmentation of cells on
pathological images. Experimental results on ganglion cells show similar detec-
tion performances but significantly better segmentation results. One limitation
is computational complexity. Ablation studies with U-net required only about
6 GB GPU memory, but BESNet required about 10 GB. More comparisons to
related works are left for future work.
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