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Abstract. While challenging, the dense segmentation of histology
images is a necessary first step to assess changes in tissue architecture
and cellular morphology. Although specific convolutional neural network
architectures have been applied with great success to the problem, few
effectively incorporate visual context information from multiple scales.
With this paper, we present a systematic comparison of different archi-
tectures to assess how including multi-scale information affects segmen-
tation performance. A publicly available breast cancer and a locally col-
lected prostate cancer datasets are being utilised for this study. The
results support our hypothesis that visual context and scale plays a cru-
cial role in histology image classification problems.
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1 Introduction

Statistical learning approaches, primarily those embodied by deep learning, have
demonstrated the potential for advancing our ability to extract information from
histology images. The concept of end-to-end learning has been applied to predict
cancer grade [1], genotype [2], and outcome [3] directly from the digitised haema-
toxylin and eosin (H&E) images. As opposed to summarising the vast amount
of information in the form of a single number or category, we aim to capture
potentially diagnostically relevant information and to support a more objective
decision making process. Providing a dense segmentation of the entire image is
a challenging and important first step towards achieving this goal.
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Tissue architecture is characterised by an organ-specific hierarchical assem-
bly of various components (e.g. stroma, epithelium, glands, blood vessels), their
shape and topology. Progressing disease can severely disrupt this multi-scale
organisation. Examples like those shown in Fig. 1 illustrate how the increased
amount of visual context improves the likelihood of correct identification. Clas-
sical medical imaging and computer vision research provides numerous examples
on how information from multiple scales can be utilised. More recently, various
deep learning approaches [4] have been introduced that effectively learn visual
context directly from training data. With this paper we provide a more system-
atic comparison of these approaches and study how these effect the ability of
differentiating between different tissue components. In addition, we introduce a
computational model that utilises feature sharing across scales and learns depen-
dencies between scales using long-short term memory (LSTM) unit [5].

An openly available collection of breast cancer samples [6] and a local col-
lection of prostate cancer histology provide the necessary disease context. An
overview of the relevant deep learning approaches is provided in Sect. 2. The set
of architectures that are being used for a comparison and details of the datasets
used in this study are being presented in Sect. 3. Our results in Sect. 4 give a
strong indication that the modelling visual context impacts the quality of dense
segmentation of histology images. While these results are extremely encouraging,
we need to take shortcomings of the datasets into account. In our conclusions
we outline what future studies are necessary to overcome the bias included in
the present datasets.

Fig. 1. Visual context. The different images of the scene containing a jumping cat
effectively highlight that the correct interpretation of a scene depends on visual context.
We content the accuracy of dense segmentation of histology images into different tissue
types depends on our ability to make effective use of multiple scales.

2 Related Work

Two main approaches to medical image segmentations are semantic segmenta-
tion and patch-wise classification. For example, Ronneberger et al. [7] incorpo-
rate a dense prediction step in their U-Net convolutional neural network (CNN)
architecture, which has been applied with great success to a range of biomedi-
cal applications. Zhang et al. [8] use a patch-based CNN approach to segment
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regions of infant MR brain images. In whole slide histology image segmentation,
patch-based prediction models appear to dominate the landscape since the lack
of comprehensive annotation ground-truth prohibits the use of semantic seg-
mentation approach. Patch-based approaches have proven successful in various
applications [9,10]. To detect cancer metastases in breast atypical lymph nodes
at a fine-grained level, Wang and colleagues [9] divide large whole slide images
into small patches and employ a CNN to assign a prediction score to every
patch. The final decision is aggregated from the micro predictions. Nonethe-
less, processing each patch independently does not take contextual information
and long range spatial dependencies into account. To address this shortcoming,
Moeskops et al. [11] extract patches of different sizes centred at the same pixel
location. Each patch is processed on a separated branch of a CNN, yielding
multiple-scale features which are then combined for the final prediction. Instead
of extracting multiple patches at different scales, Kong et al. [12] use a CNN
with a 2-dimensional long-short term (LSTM) architecture [4] to learn spatial
dependencies of image patches and their neighbours. Incorporating multi-scale
and contextual information into a patch-wise classification scheme is still an
open problem. A systematic comparison of different network architectures is
necessary to establish how visual context should be utilised in whole slide image
segmentation.

Fig. 2. Used architectures. Model complexity and run time are specified in Table 1.
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3 Methods

Comparative Methods. The 10 different architectures that are being used in
this study are presented in Fig. 2. These can be categorised into three groups:
(1) those that operates at a particular image resolution (A, B, C, D, and H),
(2) those that fuse information at multiple resolutions before passing through
a neural network (also known as early fusion approach, E), and (3) those that
combine multi-scale output features from the networks before prediction (late
fusion; F, G, I, and J). Two different approaches to late fusion are being consid-
ered. Architectures G and J apply an LSTM unit for integrating the multi-scale
information, while methods F and I fuse the features as is. By using the same
CNN for all scales (F & G) we test if it is beneficial to share features. In contrast,
separate CNNs are being learnt for each spatial scale (I & J).

With the exception of model H the same CNN architecture is used to com-
pare how the different approaches utilise the multi-scale context. It consists of 4
layers, where each layer starts with convolution of size 4×4, followed by a batch
normalisation and rectify linear unit activation before downsampling. In method
H, there are instead 8 of these convolutional layers. After these layers, the fea-
ture responses are fed to 2 fully connected layers, each with 512 hidden neural
units. Dropout is employed after each fully connected layer. A linear classifer is
used in the final layer of the network. The spatial dimensions of an input images
in all methods is 64 × 64, except method H which uses large high-resolution
images (512× 512) as input. The LSTM layer has a hidden state of size 512. See
Supplementary Material for the detailed definition of each model.

The data are separated into 56% for training, 14% for validation, and 30%
for testing at the patient level. The methods are trained using ADAM optimiser
[13] with an initial learning rate of 0.0002. The training processed is stopped
once the validation loss is no longer improving. Otherwise, the training is abort
after 100 epochs.

Datasets. Two datasets are employed for quantitative evaluation. Prostate:
the dataset consists of 4 tissue classes, including benign, lumen, stroma, and
normal. Image patches are extracted from 28 whole slide images at 4 resolutions
(2.5×, 5×, 10×, and 20×). This implies that there are 4 images at an indi-
vidual image location. There are no patches from the same whole slide image
that appear in more than one of the training, validation, and test partitions. All
annotations were provided by an expert prostate pathologist. In total, there are
41,442 patches at each scale before augmentation (lumen 8361, stroma 14547,
benign 12,016, and tumour 6,518) Breast: this publically available dataset [6]
consists of 4 tissue classes, namely normal, benign, in situ, and invasive. There
are approximately 100 images in each classes. Training and test partitions are
provided by the authors. Here, we extracted patches at 4 resolutions: 1.25×,
2.5×, 5×, and 10×. For each resolution, there are 27,060 patches before aug-
mentation (normal 6,616, benign 7,050, in situ 8239, and invasive 5,155).

Performance Evaluation. Since the segmentation problem is treated as a
patch-based classification in this study, we consider an F1-measure for the
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performance evaluation. F1-measure is mathematically equivalent to the Dice
index, a standard measure for segmentation accuracy. Due to the stochastic
nature in the training process of the algorithms, we trained each approach 3
times, and in the evaluation, we use the average value of true positives, false
positives, and false negatives across the 3 runs.

Table 1. Classification accuracy as measured by the F1-measure. Bold indi-
cates the best performance. Green, blue, yellow, and red colour codings indicate that
the results are within 97.5%, 95%, 90%, and 85% of the best performance, respectively.
This colour coding scheme can be used to rank the methods (bold = 1, green = 2, blue
= 3, yellow = 4, red = 5, and no colour = 6). The overall ranking is summarised by
the rank-sum. A total running time is measured on the test set of the prostate cancer
data.

4 Results and Discussion

The results summarised in Table 1 provide some clear indication that including
information from multiple different scales (E, F, G, I, and J) improves segmen-
tation performance. When ranked with respect to performance, approaches that
operate on a fixed resolution are clearly inferior. Rather than simply reporting
out top performance with respect to each tissue category, we would like to high-
light approaches that perform consistently well. A colour code is used in Table 1
to mark how each method relates to the top performer. In addition, we compute
an accumulative rank.

While model H yields the top performance for selected classes, it also per-
forms rather poorly on others. Given that this model performs extremely well
on detecting stroma in prostate tissue, one could argue that it specialises on
capturing certain texture patters extremly well. When comparing models G and
J we can make some interesting observations. On the given data sets model G
performs consistently well in all of the tissue classes and has the lowest accumu-
lative rank. Only considering the prostate samples model J is clearly the best.
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However, the performance of this model degrades on the breast cancer cases.
Here, the interplay between model complexity and size of the data set needs to
be taken into account. Later we discuss this issue in more detail. Overall, these
results support our hypothesis that visual context and scale matters in histology
image classification problems.

Fig. 3. Resilience to noise. The percentage change in the F1-measure at different
noise levels of model E (in red) and model G (in green) is shown. The performance at
the zero noise level is used as a reference. On each scale, an image is randomly replaced
by a noisy image (∼ N (·|μ = 127, σ2 = 1)) with probability p ∈ {0.1, 0.3, 0.5}

Dataset Size and Makeup. It is crucial to mention that we observe a high
degree of visual variation within each class in the breast cancer data. But each of
these categories only contains a limited number of instances. This has two major
consequences. When compared to the prostate experiments, all of the methods
perform worse. More importantly, the breast cancer data set disadvantages more
complex architectures. For example, consider method I and its counterpart with
a significantly smaller number of parameters, method F. There is a dramatic
drop in the performance of method I in relative to that of method F in most of
the tissue classes. The same behaviour can be observed across a pair of methods
J and G and a pair H and D in some of the tissue classes. This is why we need
to interpret the results obtained on this breast data set with great caution.

Feature Integration. From Table 1, the models which utilise a LSTM unit (G
and J) perform better than their counterparts with no LSTM (F and I) in most of
the cases. Importantly, the LSTM unit also improves the resilience to noise. The
direct comparison between models E and G shown in Fig. 3 shows the percentage
change in the F1-measure when we contaminate the images with noise. As one
would expect, G is more resilient to noise as the percentage of reduction in the
performance is consistently smaller than that of strategy E across tissue classes
in both datasets.

Computation Efficiency vs Accuracy. Especially when working on whole
side images, computational efficiency needs to be taken into account. Here, mem-
ory usage and running time are important factors. In terms of the number of
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Table 2. Effect of the order of image scales. F1-measures of the method with
a single stream of CNN and LSTM (G) subjected to different sequences of the image
scale orders.

Dataset Class Order

Low → High High → Low Random Bidirectional

Prostate Lumen 0.719 0.737 0.750 0.756

Stroma 0.874 0.881 0.889 0.891

Benign 0.790 0.779 0.787 0.776

Tumour 0.750 0.706 0.724 0.734

Breast Normal 0.573 0.588 0.590 0.609

Benign 0.423 0.419 0.409 0.374

InSitu 0.581 0.567 0.545 0.561

Invasive 0.576 0.567 0.541 0.548

parameters, methods E, F and G and have a significantly lower number of param-
eters than H, I, and J. Based on the trend observed in the prostate dataset there
is a possibility that when trained on more samples and longer methods I and
J will yield an even better performance. On the other hand, methods E, F, G,
I, and J run significantly faster than H (Table 1). In the medical context, the
cost of running time has more weight than the cost of memory usage (number of
parameters). As such, method H, which operates on the highest image resolution
and full image dimensions, is considered very costly without offering significant
improvement in the performance.

Sensitivity of Method G to the Order of Image Scales. To inspect
whether the order of image scales affects the performance, we considered the
following sequences of scale orders: (1) low to high, (2) high to low, (3) random
(5× → 2.5× → 20× → 10× for the prostate and 2.5× → 1.25× → 10× → 5×

Fig. 4. Segmentation example. This whole slide segmentation was obtained with
architecture G on one prostate cancer sample. Benign, tumour, lumen, and stroma
regions are highlighted in orange, yellow, green, and purple. Note that the background
white region is intentionally highlighted in green. Figures B and C correspond to the
areas marked by rectangles in figure A and B.
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for the breast dataset), and (4) bidirectional (low ↔ high). From Table 2, there
is no strong difference between F1-measures produced by different experimental
conditions. This implies that the performance of the method G does not depend
on the order of the image scales.

5 Conclusions

To address the lack of comprehensive annotations we cast the segmentation
problem as a patch-based classification rather than semantic segmentation task.
In summary we conclude:

– Visual context: Our results support the claim that incorporating larger
context produces superior results.

– Feature integration: LSTM units effectively capture the dependencies
between different scales and generally improves performance. LSTMs are
resilient to noise and not sensitive to the order of inputs.

– Dataset design: Small datasets typically do not represent the true variation
of the data. Real clinical samples should be used for validation.

In addition, we have introduced a computationally efficient model (G) which
performs well on various different tissue categories. Visual inspection of the
segmentation results on whole slide images of this approach also looks highly
encouraging (Fig. 4). To overcome the problem of insufficient training data we
aim at establish a standard dataset which includes data and annotation from
multiple institutions. In addition to the manual annotation, immunohistochem-
istry staining will be considered to provide biological ground truth.
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