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Abstract. Deep neural networks have been used in survival prediction
by providing high-quality features. However, few works have noticed the
significant role of topological features of whole slide pathological images
(WSI). Learning topological features on WSIs requires dense computa-
tions. Besides, the optimal topological representation of WSIs is still
ambiguous. Moreover, how to fully utilize the topological features of
WSI in survival prediction is an open question. Therefore, we propose
to model WSI as graph and then develop a graph convolutional neu-
ral network (graph CNN) with attention learning that better serves the
survival prediction by rendering the optimal graph representations of
WSIs. Extensive experiments on real lung and brain carcinoma WSIs
have demonstrated its effectiveness.

1 Introduction

Survival analysis is generally a set of statistical models where the output is the
elapsed time until a certain event occurs. The event can range from vehicle part
failure to adverse drug reaction. Clinical trials are aimed to assess different treat-
ment regimes with the biological death as primary event of interest to observe.
An accurate estimate of survival probability provides invaluable information for
clinical interventions.

The Cox proportional hazards model [3] is most popular in survival anal-
ysis. However, the classical Cox model and its early followers overly simplified
the patient’s survival probability as linear mapping from covariates. Recently,
Katzman et al. designed a fully connected network (DeepSurv [9]) to learn the
nonlinear survival functions. Although it was showed that neural networks out-
performed the linear Cox model [4], it cannot directly learn from pathological
images. Along with the success of convolutional neural networks (CNNs) on
generic images, pathological image, as well as CT and MRI [14], have become
ideal data sources for training DL-based survival models. Among them, whole
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slide image (WSI) [12] is one of the most valuable data formats due to the mas-
sive multi-level pathological information on nidus and its surrounding tissues.

WSISA [21] was the first trial of moving survival prediction onto whole slide
pathological images. To have a efficient approach on WSIs, a patch sampling on
WSIs is inevitable. However, their DeepConvSurv model was trained on clus-
tered patch samples separately. Consequently, the features extracted were over-
localized for WSIs because the receptive field is constrained within physical area
corresponding to a single patch (0.063 mm?). The pathological sections of nidus
from patients contain more than the regions of interest (e.g tumor cells), there-
fore, the representations from random patch may not strongly correspond to the
disease. Furthermore, it has been widely recognized that the topological prop-
erties of instances on pathological images are crucial in medical tasks, e.g. cell
subtype classification and cancer classification. While, WSISA is neither able to
learn global topological representations of WSIs nor to construct feature maps
upon given topological structures.

Graph is widely employed to represent topological structures. However, mod-
eling a WST as graph is not straightforward. Cell-graph [6] is infeasible for WSIs
due to its huge number of cells and the many possible noisy nodes (isolated
cells). The intermediate patch-wise features are a good option to construct graph
with, balancing efficiency and granularity. However, applying CNNs on graph-
structured data is still difficult.

In the paper, we propose a graph convolutional neural network (GCN) based
survival analysis model (DeepGraphSurv) where global topological features of
WSI and local patch features are naturally integrated via spectral graph con-
volution operators. The contributions are summarized as: (1) learn both local
and global representations of WSIs simultaneously: local patch features are
integrated with global topological structures through convolution; (2) task-
driven adaptive graphs induce better representations of WSI; (3) introducing
graph attention mechanism reduces randomness of patch sampling and there-
fore increases model robustness. As far as we know, DeepGraphSurv is the first
GCN based survival prediction model with WSIs as input. Extensive experi-
ments on cancer patient WSI datasets demonstrate that our model outperforms
the state-of-the-art models by providing more accurate survival risk predictions.

2 Methodology

Graph Construction on WSI: Given a set of sampled patch images P = {P;}
from WSI, we have to dump those patches from the margin areas which contains
few cells, therefore, the cardinality ||P|| differs by WSI. Consequently, the graphs
we construct for WSIs are of different sizes. Given patches as vertices, vertex
features are generated by the VGG-16 network pre-trained on ImageNet. Due to
the lack of patch labels, we cannot fine-tune the network on WSI patches. We
will introduce how graph CNN model mitigates this deficiency in next section.
Graph edges were constructed by thresholding the Euclidean distances between
patch pairs, which were calculated using the 128 features compressed from the
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VGG-16 outputs with patches as input. Compressions are committed separately
on train and test sets by principal component analysis (PCA).
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Fig. 1. The architecture of DeepGraphSurv. An example of graph with 6 nodes on WSI
constructed based on the 128 compressed VGG-16 features from 6 random patches. In
real experiments, we sample 1000+ patches (as graph nodes) on WSI.

Spectral Graph Convolution. Given a graph G = (V| E), its normalized
graph Laplacian L = [ — D=Y/2AD~1/2 where A is the adjacency matrix and
D is the degree matrix of G. The graph on WSI is irregular with A(G) > 6(G).
A spectral convolutional filter built based on spectral graph theory [1,2,20] is
more applicable to irregular WSI graph. It was proved that a spectrum formed by
smooth frequency components leads to a localized spatial kernel. Furthermore,
[5] formulated kernel as a K*" order polynomial of diagonal A, and diag(A) is
the spectrum of graph Laplacian L:

K—-1
go(A%) =) A", (1)
k=0

Based on theorem from [2], spectral convolution on graph G with vertex features
X € RV*F a5 layer input is formulated as:

Y = ReLU (go(L")X). (2)

ReLU is activation function. Output Y € RV*¥ is a graph of identical number of
vertices with convolved features. The learning complexity of K-localized kernel
is O(K). To have a fast filtering, [5] used Chebyshev expansion as approximation
of gg(L), Recursive calculation of go(L%) reduces the time cost from O(K N?) to
O(KS), S (< N?) is the count of nonzeros in L. Sparseness of L was enforced by
edge thresholding when graph construction. Initial WSI graph G was built upon
compressed patch features. The VGG-16 feature network was not fine-tuned on
WSI patches due to the lack of patch labels. Patient-wise censored survival label
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is absolutely infeasible for a patch-wise training. Therefore, the initial graph may
not correctly represent the topological structures between patches on WSI.

Survival-Specific Graph. The deficiency of initial graph results from the insuf-
ficiently trained feature network. It has two problems: (1) network used irrelevant
supervision (i.e ImageNet label); (2) network was not fine-tuned on pathological
images. It would be better, if the patch features could be fine-tuned with survival
censor labels. To achieve it, we design a separate graph G and L to describe the
specific survival-related topological relationship between WSI patches [13,15]. L
is learned individually on each WSL. Direct learning of L is impractical because
of the graph size and the uniqueness of topology on WSIs. Instead of learning and
storing graph edges, we learn the Mahalanobis distance metrics M for evaluating
edge connectivity. If d is the dimensionality of feature, the learning complexity
is reduced from O(N?) to O(d?). Because there is no priors on metrics, M has
to be randomly initialized. To accelerate the convergence, we keep initial graph
as regularization term for survival-specific graph. The final graph Laplacian in
convolution will be £(M,X) = L(M,X) + BL. 3 is trade-off coefficient. With
survival-specific graph, the proposed graph convolution is formulated as:

Y = ReLU (go(L(M, X)")X). (3)

Afterwards, there is a feature transform operator parameterized as W €
RFinxFout and bias b € RFeut applied to output Y: Y/ = YW + b. This re-
parameterization on activations will lead to a better imitation of CNNs, whose
output features are mappings of all input feature dimensions. Model parameters
{M, 0} get updated by back-propagation w.r.t. survival loss, which promises
fine-tuned features and graphs optimized for survival analysis purpose.

Graph Attention Mechanism. Generally, there are merely a few local regions
of interest (Rols) on WSIs matter in survival analysis. Random sampling cannot
guarantee patches are all from Rols. Attention mechanism provides an adaptive
patch selection by learning “importance” on them. In DeepGraphSurv, there is
a parallel network to learn attention on nodes conditioned on node features. The
network consists of two proposed GCN layers (Eq. 3). The outputs of attention
network are node attention values: o = f,,,,(X). Given learned attentions, the
output risk R for X on graph G(V, E) is the weighted sum of Y,, of each node n:

R=Y" frn(X)nYn, ne {0, |V} (4)

As shown above, in graph gather layer (Fig.1), the learned attentions are
multiplied onto the node-wise predictions when aggregating attentive graph out-
puts. The attention network will be trained jointly with the prediction network.
Different from previous DL-based survival models that basically act as feature
extractor [21], DeepGraphSurv directly generates predicted risks. We integrated
regression of survival risk with graph feature learning on WSIs. The loss function
is negative Cox log partial likelihood for censored survival data:

LR)= >  (-Ritlog >  exp(R;)). (5)

i€{i:8;=1} Je{i:T;>=T;}
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S;, T; are respectively the censor status and the survival time of i-th patient. The
fine-tuned patch features and the survival-specific graphs of WSIs are accessible
at each proposed GCN layer, while the later layers offer more high-level topology-
aware features of WSI.

3 Experiment

3.1 Dataset

As to the raw data source, we utilized the whole slide pathological images from a
generic cancer patient dataset TCGA, publicly released by The Cancer Genome
Atlas project [8]. The research studied what and how errors in DNA trigger the
occurrence of 33 cancer subtypes. We tested our model on two cancer subtypes
from TCGA data: glioblastoma multiforme (GBM) and lung squamous cell car-
cinoma (LUSC). Besides, NLST (National Lung Screening Trials [10]) employed
53,454 heavy smokers of age 55 to 74 with at least 30-year smoking history as high
risk group for lung cancer survival analysis. We also committed an experiment
on a subset of NLST database that consists of both squamous-cell carcinoma
(SCC) and adenocarcinoma (ADC) patients’ WSIs to evaluate the performance
of our model on mixed cancer subtype dataset. Some quantitative facts of WSI
used in the experiments are listed in Table 1.

Table 1. Dataset Statistics. Some patients may have multiple WSIs on record. Avg.
size is the mean image size of WSI on disk.

Database | Cancer Subtype | No. Patient | No. WSI | Quality | Avg. Size
TCGA |LUSC 463 535 Medium | 0.72 GB
TCGA |GBM 365 491 Low 0.50 GB
NLST ADC & SCC 263 425 High 0.74GB

3.2 State-of-the-Art Methods

The baseline survival methods include: LASSO-Cox model [18], BoostCI [17]
and Multi-Task Learning model for Survival Analysis (MTLSA) [16]. However,
their effectiveness largely depends on the quality of hand-crafted features. More-
over, they were entirely not designed for WSI based survival analysis. For a fair
comparison, we first feed those models with the features extracted by CellPro-
filer [11], e.g cell shape and textures, sampled and averaged over patch images.
Then, we feed them with the WSI features generated by DeepGraphSurv from
the same group of patient in order to demonstrate the gain of performance
brought by the fine-tuned topology-aware WSI features only.

Besides classical models, we compared DeepGraphSurv with the state-of-the-
art deep learning based survival models on WSI. WSISA [21] worked on clustered
patches from WSIs, however, they simply neglected the topological relationship
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of the instances on WSI, which is also of great importance on survival analysis.
Graph CNNs have recognized power of mining structured features on graph data.
We concatenate the latest spectral GCN model [5], working on pre-trained fixed
graphs, with a Cox regression as one of comparison methods in order to confirm
the advantages brought by adding proposed survival-specific graphs onto GCN.

3.3 Result and Discussion

As far as we know, DeepGraphSurv is the first survival model that used attention
scheme. Figure 2 shows that, after 40 epoch, the regions of high attention on a
WSI have correctly highlighted the most of Rols annotated by medical experts.
This interpreted part of global structural knowledge we have discovered on WSI.

Fig. 2. Left: annotation of Rols; Right: learned attention map. The yellow color marks
the regions of high attention values on WSI. (Best viewed in color)

The concordance probability (C-index) is the fraction of all pairs of patients
whose predicted survival times are correctly ordered as all censored patients
that can be reasonably ordered. Forming survival order as graph G;(D, £) whose
edge &; ; implies T; < T}, the C-index is: C(D, Gy, f(x)) = ||Tl|\ Yo, Liwo<sa)
where 1¢(,,)<f(z,) is the indicator function: 1, = 1 if @ < b, otherwise 0. f(z;)
is the predicted risk of z;. When a patient has multiple WSIs, the predicted risks
were first averaged for the patient before calculating C-index.

The C-index results are reported in Table 2. Training and testing sets were
randomly splitted and separately prepared. The classical survival models, e.g
LASSO-Cox, cannot perform well was because they only utilize hand-crafted
features. Possible issues include: (1) patches are partial representations of WSI;
(2) the data quality of patch may vary. Consequently, the features collected from
random patches brought noisy and biased representations of WSI. Moreover, the
features from CellProfiler are general descriptors of pathological images. After
feeding them with the WSI features generated by DeepGraphSurv, the C-index
were largely lifted by 0.04 on average on NLST and LUSC. This outcome showed
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that the features fine-tuned with survival labels are indeed better representations
of WSI for survival analysis purpose.

However, we also observe that, due to the lower image quality, only using fine-
tuned patch features cannot improve prediction on GBM data. DeepGraphSurv
generates predictions by encoding patch features with their topological structure
via convolution. When patch features are unreliable, topological structure of WSI
instances makes more sense in recognition of survival patterns. This may explain
the lift by DeepGraphSurv compared to [5,21] who learn little from topology.

Table 2. C-index Table. * indicates that the model was trained and tested with the
features generated by DeepGraphSurv.

Model LUSC |GBM |NLST
LASSO-Cox [18] 0.5280 |0.5574 |0.4738
LASSO-Cox* 0.5663 | 0.5165 | 0.5663
BoostCI [17] 0.5633 | 0.5543 | 0.5705
BoostCIx 0.5800|0.5130 |0.5716
EnCox [19] 0.5216 |0.5597 |0.4883
EnCoxx 0.5740 | 0.5231 | 0.5742
RSF [7] 0.5066 | 0.5570 |0.5964
RSFx 0.5492 | 0.5193 |0.5491
MTLSA [16] 0.5386 | 0.5787 |0.6042
MTLSA* 0.5247 | 0.5630 |0.5573
WSISA [21] 0.6380 | 0.5760 |0.6539
GCN-Cox [5] 0.6280 | 0.5901 |0.6845
DeepGraphSurv | 0.6606 | 0.6215 | 0.7066

The previous GCN [5] outperformed WSISA [21] on most of datasets because
it can aggregate node features as graph representation of WSI according to graph
structure, while [21] cannot. However, [5] still worked on unsupervised graphs
obtained with noisy VGG-16 features. DeepGraphSurv conducted convolution on
the fine-tuned survival-specific graphs that were trained to represent the survival-
related topological structures on each individual WSI. This improved C-index by
another 0.03 on average, which again verified that the topological features trained
in supervised way work better than that learned from unsupervised approaches.

4 Conclusion

Survival prediction is a useful clinical intervention tool, although it cannot act as
expected in many scenarios. Efficient mining of survival-related structured fea-
tures on whole slide images is a promising solution of boosting survival analysis.
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In this paper, we suggested to model WSI as graph and proposed DeepGraph-
Surv to learn global topological representations of WSI. Instead of unsupervised
graph, DeepGraphSurv creatively utilized a survival-specific graph trained under
supervision of survival labels. The effectiveness of our model has been confirmed
by improved accuracy of risk ranking on multiple cancer patient datasets across
carcinoma subtypes.
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